Câu hỏi:

21/07/2025 66 Lưu

 Cho hàm số \(f(x) = 3{x^2}\) xác định trên \(\mathbb{R}\).

a) Chứng minh rằng \(F(x) = {x^3}\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).

b) Với \(C\) là hằng số tuỳ ý, hàm số \(H(x) = F(x) + C\) có là nguyên hàm của \(f(x)\) trên \(\mathbb{R}\) không?

c) Giả sử \(G(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\). Tìm đạo hàm của hàm số \(G(x) - F(x)\). Từ đó, có nhận xét gì về hàm số \(G(x) - F(x)\) ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \({F^\prime }(x) = {\left( {{x^3}} \right)^\prime } = 3{x^2} = f(x)\) với mọi \(x \in \mathbb{R}\), suy ra \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).

b) \({H^\prime }(x) = {(F(x) + C)^\prime } = {F^\prime }(x) + 0 = f(x)\) với mọi \(x \in \mathbb{R}\), suy ra \(H(x)\) cũng là nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).

c) \({[G(x) - F(x)]^\prime } = {G^\prime }(x) - {F^\prime }(x) = f(x) - f(x) = 0\). Suy ra \(G(x) - F(x) = C\) ( \(C\) là hằng số ). Do đó, \(G(x) - H(x)\) là hàm hằng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \({F^\prime }(x) = {x^2} - 2x,{G^\prime }(x) = {x^2} + 2x\).

Vì \({F^\prime }(x) = f(x)\) với mọi \(x \in \mathbb{R}\) nên hàm số \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).

Hàm số \(G(x)\) không là nguyên hàm của \(f(x)\) trên \(\mathbb{R}\) vì với \(x = 1\), ta có

\({G^\prime }(1) = 3 \ne  - 1 = f(1){\rm{. }}\)

Lời giải

\({F^\prime }(x) = {e^x} + x{e^x} = (x + 1){e^x}\) nên \(F(x)\) là một nguyên hàm của \(f(x) = (x + 1){e^x}\).