Trong mỗi trường hợp sau, hàm số \(F(x)\) có là một nguyên hàm của hàm số \(f(x)\) trên khoảng tương ứng không? Vi sao?
a) \(F(x) = x\ln x\) và \(f(x) = 1 + \ln x\) trên khoảng \((0; + \infty )\);
b) \(F(x) = {e^{\sin x}}\) và \(f(x) = {e^{\\((0; + \infty )\)cos x}}\) trên \(\mathbb{R}\).
Trong mỗi trường hợp sau, hàm số \(F(x)\) có là một nguyên hàm của hàm số \(f(x)\) trên khoảng tương ứng không? Vi sao?
a) \(F(x) = x\ln x\) và \(f(x) = 1 + \ln x\) trên khoảng \((0; + \infty )\);
b) \(F(x) = {e^{\sin x}}\) và \(f(x) = {e^{\\((0; + \infty )\)cos x}}\) trên \(\mathbb{R}\).
Quảng cáo
Trả lời:

a) \({F^\prime }(x) = \ln x + x{(\ln x)^\prime } = \ln x + 1 = f(x)\) với mọi \(x \in (0; + \infty )\) nên hàm số \(F(x) = x\ln x\) là một nguyên hàm của hàm số \(f(x) = 1 + \ln x\) trên khoảng .
b) \(F(x) = {e^{\sin x}}\) không là nguyên hàm của hàm số \(f(x) = {e^{\cos x}}\) trên \(\mathbb{R}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \({F^\prime }(x) = {\left( {5x + {x^2}} \right)^\prime } = 5 + 2x = f(x)\) với mọi \(x\) thuộc \(\mathbb{R}\).
Vậy \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\).
b) Ta có \({G^\prime }(x) = {(\tan x)^\prime } = \frac{1}{{{{\cos }^2}x}} = g(x)\) với mọi \(x\) thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Vậy \(G(x)\) là một nguyên hàm của hàm số \(g(x)\) trên \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
c) \(F'\left( x \right) = \ln x + x{\left( {\ln x} \right)^\prime } = \ln x + 1 = f\left( x \right)\) với mọi \(x \in \left( {0; + \infty } \right)\) nên hàm số \(F\left( x \right) = x\ln x\) là một nguyên hàm của hàm số \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\).
Lời giải
Ta có: \({F^\prime }(x) = {x^2} - 2x,{G^\prime }(x) = {x^2} + 2x\).
Vì \({F^\prime }(x) = f(x)\) với mọi \(x \in \mathbb{R}\) nên hàm số \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).
Hàm số \(G(x)\) không là nguyên hàm của \(f(x)\) trên \(\mathbb{R}\) vì với \(x = 1\), ta có
\({G^\prime }(1) = 3 \ne - 1 = f(1){\rm{. }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.