7 bài tập Chứng minh hàm số F(x) là một nguyên hàm của f(x) trên K (có lời giải)
32 người thi tuần này 4.6 64 lượt thi 7 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Ta có \({F^\prime }(x) = {\left( {5x + {x^2}} \right)^\prime } = 5 + 2x = f(x)\) với mọi \(x\) thuộc \(\mathbb{R}\).
Vậy \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\).
b) Ta có \({G^\prime }(x) = {(\tan x)^\prime } = \frac{1}{{{{\cos }^2}x}} = g(x)\) với mọi \(x\) thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Vậy \(G(x)\) là một nguyên hàm của hàm số \(g(x)\) trên \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
c) \(F'\left( x \right) = \ln x + x{\left( {\ln x} \right)^\prime } = \ln x + 1 = f\left( x \right)\) với mọi \(x \in \left( {0; + \infty } \right)\) nên hàm số \(F\left( x \right) = x\ln x\) là một nguyên hàm của hàm số \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\).
Lời giải
a) \({F^\prime }(x) = {\left( {{x^3}} \right)^\prime } = 3{x^2} = f(x)\) với mọi \(x \in \mathbb{R}\), suy ra \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).
b) \({H^\prime }(x) = {(F(x) + C)^\prime } = {F^\prime }(x) + 0 = f(x)\) với mọi \(x \in \mathbb{R}\), suy ra \(H(x)\) cũng là nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).
c) \({[G(x) - F(x)]^\prime } = {G^\prime }(x) - {F^\prime }(x) = f(x) - f(x) = 0\). Suy ra \(G(x) - F(x) = C\) ( \(C\) là hằng số ). Do đó, \(G(x) - H(x)\) là hàm hằng.
Lời giải
\({F^\prime }(x) = {e^x} + x{e^x} = (x + 1){e^x}\) nên \(F(x)\) là một nguyên hàm của \(f(x) = (x + 1){e^x}\).
Lời giải
Ta có: \({F^\prime }(x) = {x^2} - 2x,{G^\prime }(x) = {x^2} + 2x\).
Vì \({F^\prime }(x) = f(x)\) với mọi \(x \in \mathbb{R}\) nên hàm số \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).
Hàm số \(G(x)\) không là nguyên hàm của \(f(x)\) trên \(\mathbb{R}\) vì với \(x = 1\), ta có
\({G^\prime }(1) = 3 \ne - 1 = f(1){\rm{. }}\)
Lời giải
\(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên khoảng \((0; + \infty )\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.