Câu hỏi:

21/07/2025 40 Lưu

Cho tam giác \(ABC\) có chu vi bằng 12 và bán kính đường tròn nội tiếp bằng 1. Diện tích của tam giác \(ABC\) bằng

A. \(12\).                         
B. \(3\).                         
C. \(6\).                                
D. \(24\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Nửa chu vi tam giác \(ABC\) là: \(p = \frac{{12}}{2} = 6\).

Diện tích của tam giác \(ABC\) là: \(S = pr = 6 \cdot 1 = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Áp dụng định lí côsin trong tam giác, ta có:

\({a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow {a^2} = {7^2} + {5^2} - 2 \cdot 7 \cdot 5 \cdot \cos 120^\circ  = 109.\)

Do đó, \(a = \sqrt {109} \;{\rm{cm}}\).

b) Sai. Ta có \({b^2} = {a^2} + {c^2} - 2ac\cos B \Rightarrow \cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{109 + {5^2} - {7^2}}}{{2\sqrt {109}  \cdot 5}} \approx 0,81\).

c) Đúng. Tương tự, \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{109 + {7^2} - {5^2}}}{{2\sqrt {109}  \cdot 7}} \approx 0,91\).

d) Đúng. Áp dụng định lí sin trong tam giác, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) nên \(R = \frac{a}{{2 \cdot \sin A}} = \frac{{\sqrt {109} }}{{2 \cdot \sin 120^\circ }} \approx 6,03\,\,({\rm{cm}})\).

Câu 2

A. \(84\,.\)                       
B. \[\sqrt {84} \,.\]        
C. \(42\,.\)                            
D. \[\sqrt {168} \,.\]

Lời giải

Đáp án đúng là: A

Ta có \(p = \frac{{a + b + c}}{2} = \frac{{13 + 14 + 15}}{2} = 21\).

Vậy \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = 84\) (công thức Heron).