Câu hỏi:

24/07/2025 7 Lưu

    Một người chạy trong thời gian 1 giờ, vận tốc \(v\) (km/h) phụ thuộc vào thời gian \(t\) (h) có đồ thị là một phần parabol với đỉnh \(I\left( {\frac{1}{2};{\rm{ }}8} \right)\) và trục đối xứng song song với trục tung như hình bên. Tính quảng đường \(s\) người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy?

Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi parabol là \(\left( P \right):y = a{x^2} + bx + c.\) Từ hình vẽ ta có \(\left( P \right)\) đi qua \(O\left( {0;{\rm{ }}0} \right)\), \(A\left( {1;{\rm{ }}0} \right)\) và điểm \(I\left( {\frac{1}{2};{\rm{ }}8} \right)\).
Suy ra \(\left\{ \begin{array}{l}c = 0\\a + b + c = 0\\\frac{a}{4} + \frac{b}{2} + c = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 32\\b = 32\\c = 0\end{array} \right..\)
Vậy \(\left( P \right):y =  - 32{x^2} + 32x\). Quảng đường người đó đi được là \[s = \int\limits_0^{\frac{3}{4}} {\left( { - 32{x^2} + 32x} \right){\rm{d}}x = } 4,5\](km).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(a\,\left( h \right)\) là khoảng thời gian hai xe gặp nhau.
Sau \(a\,\left( h \right)\) xe ôt ô thứ nhất đi được quãng đường \(\int\limits_0^a {\left( {2t + 1} \right){\rm{d}}t}  = {a^2} + a\).
Xét chuyển động của xe ô tô thứ 2.
+) Chọn mốc thời gian là lúc người lái xe đạp phanh.
Ta có \({v_0} = v\left( {{t_0}} \right) =  - 5{t_0} + 20\)
Mặt khác \({v_0} = 10\)\( \Rightarrow  - 5{t_0} + 20 = 10 \Rightarrow {t_0} = 2\).
Vậy sau khi chạy được \(2\left( h \right)\)xe ô tô thứ 2 đạp phanh.
Sau \(a\,\left( h \right)\) xe ô tô thứ 2 cách \(A\)một quãng đường là \(22 + 10.2 + \int\limits_2^a {\left( { - 5t + 20} \right){\rm{d}}t} \)\( = 12 - \frac{5}{2}{a^2} + 20a\)
Sau \(a\,\left( h \right)\) hai xe gặp nhau nên ta có:\({a^2} + a = 12 - \frac{5}{2}{a^2} + 20a\)\( \Leftrightarrow \frac{7}{2}{a^2} - 19a - 12 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a =  - \frac{4}{7}\,\\a = 6\end{array} \right.\)
Vậy \(a = 6\).

Lời giải

Ta có \({v_B}\left( t \right) = \int {a.{\rm{dt}}}  = at + C\), \({v_B}\left( 0 \right) = 0 \Rightarrow C = 0\) \( \Rightarrow {v_B}\left( t \right) = at\).
Quãng đường chất điểm \(A\) đi được trong \(25\) giây là
\({S_A} = \int\limits_0^{25} { \left( {\frac{1}{{100}}{t^2} + \frac{{13}}{{30}}t } \right){\rm{dt}}} \) \( = \left( {\frac{1}{{300}}{t^3} + \frac{{13}}{{60}}{t^2}} \right) \left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle25\atop\scriptstyle}} \right. = \frac{{375}}{2}\).
Quãng đường chất điểm \(B\) đi được trong \(15\) giây là sB=015at.dt=at22150=225a2
Ta có \(\frac{{375}}{2} = \frac{{225a}}{2} \Leftrightarrow a = \frac{5}{3}\). Vận tốc của \(B\) tại thời điểm đuổi kịp \(A\) là \({v_B}\left( {15} \right) = \frac{5}{3}.15 = 25 \left( {{\rm{m/s}}} \right)\).