Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng 5. Chọn hệ trục toạ độ Oxyz có gốc toạ độ O trùng với A; các điểm B, D, A′ lần lượt nằm trên các tia Ox, Oy, Oz. Xác định toạ độ các điểm B, C, C′.
Câu hỏi trong đề: 5 bài tập Tọa độ của điểm, vectơ (có lời giải) !!
Quảng cáo
Trả lời:

Vì \(\overrightarrow {OB} \) và \(\vec i\) cùng hướng và \({\rm{OB}} = 5\) nên \(\overrightarrow {OB} = 5\vec i\).
Tương tự, ta có \(\overrightarrow {OD} = 5\vec j;\overrightarrow {O{A^\prime }} = 5\vec k\).
Theo quy tắc hình bình hành, ta có: \(\overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} = 5\vec i + 5\vec j\).
Theo quy tắc hình hộp, ta có: \(\overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} + \overrightarrow {O{A^\prime }} = 5\vec i + 5\vec j + 5\vec k\).
Do đó \({\rm{B}}(5;0;0),{\rm{C}}(5;5;0),{{\rm{C}}^\prime }(5;5;5)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ba vectơ đơn vị trên ba trục tọa độ lần lượt là \(\vec i,\vec j,\vec k\) với độ dài của \(\vec i,\vec j,\vec k\) lần lượt bằng \(\frac{1}{2}AB,\frac{1}{2}AD,\frac{1}{3}AS\)
b) Ta có: \(\overrightarrow {AB} = 2\vec i;\overrightarrow {AD} = 2\vec j;\overrightarrow {AS} = 3\vec k\).
Do đó \(\overrightarrow {AB} = (2;0;0),\overrightarrow {AD} = (0;2;0),\overrightarrow {AS} = (0;0;3)\).
Theo quy tắc hình bình hành, ta có \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} = 2\vec i + 2\vec j\).
Vì \({\rm{M}}\) là trung diếm của SC nên \(\overrightarrow {AM} = \frac{1}{2}(\overrightarrow {AC} + \overrightarrow {AS} ) = \frac{1}{2}(2\vec i + 2\vec j + 3\vec k) = \vec i + \vec j + \frac{3}{2}\vec k\).
Do đó \(\overrightarrow {AM} = \left( {1;1;\frac{3}{2}} \right)\).
Lời giải
Ta có: \(\overrightarrow {OA} = 4\vec i + 0\vec j + 0\vec k\), suy ra \(A(4;0;0)\);
\(\overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {OC} = 4\vec i + 6\vec j + 0\vec k{\rm{, suy ra }}B(4;6;0);\)
\({\rm{ }}\overrightarrow {O{B^\prime }} = \overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {O{O^\prime }} = 4\vec i + 6\vec j + 3\vec k{\rm{, suy ra }}{B^\prime }(4;6;3)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.