Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng 5. Chọn hệ trục toạ độ Oxyz có gốc toạ độ O trùng với A; các điểm B, D, A′ lần lượt nằm trên các tia Ox, Oy, Oz. Xác định toạ độ các điểm B, C, C′.
Câu hỏi trong đề: 5 bài tập Tọa độ của điểm, vectơ (có lời giải) !!
Quảng cáo
Trả lời:


Vì \(\overrightarrow {OB} \) và \(\vec i\) cùng hướng và \({\rm{OB}} = 5\) nên \(\overrightarrow {OB} = 5\vec i\).
Tương tự, ta có \(\overrightarrow {OD} = 5\vec j;\overrightarrow {O{A^\prime }} = 5\vec k\).
Theo quy tắc hình bình hành, ta có: \(\overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} = 5\vec i + 5\vec j\).
Theo quy tắc hình hộp, ta có: \(\overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} + \overrightarrow {O{A^\prime }} = 5\vec i + 5\vec j + 5\vec k\).
Do đó \({\rm{B}}(5;0;0),{\rm{C}}(5;5;0),{{\rm{C}}^\prime }(5;5;5)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\overrightarrow {OA} = 4\vec i + 0\vec j + 0\vec k\), suy ra \(A(4;0;0)\);
\(\overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {OC} = 4\vec i + 6\vec j + 0\vec k{\rm{, suy ra }}B(4;6;0);\)
\({\rm{ }}\overrightarrow {O{B^\prime }} = \overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {O{O^\prime }} = 4\vec i + 6\vec j + 3\vec k{\rm{, suy ra }}{B^\prime }(4;6;3)\)
Lời giải
Để tìm tọa độ của vectơ \(\overrightarrow {AB} \), ta cần biểu diễn \(\overrightarrow {AB} \) theo ba vectơ \(\vec i,\vec j,\vec k\).
Do \(\overrightarrow {AB} \) cùng hướng với \(\vec i\) và \(|\overrightarrow {AB} | = AB = 8 = 8|\vec i|\) nên \(\overrightarrow {AB} = 8\vec i\) hay \(\overrightarrow {AB} = 8\vec i + 0\vec j + 0\vec k\).
Tương tự, ta cũng có: \(\overrightarrow {AD} = 0\vec i + 6\vec j + 0\vec k,\overrightarrow {A{A^\prime }} = 0\vec i + 0\vec j + 4\vec k\).
Trong hình bình hành ABCD, ta có: \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} = 8\vec i + 6\vec j + 0\vec k\).
Trong hình bình hành \(A{A^\prime }{C^\prime }C\), ta có: \(\overrightarrow {A{C^\prime }} = \overrightarrow {AC} + \overrightarrow {A{A^\prime }} = 8\vec i + 6\vec j + 4\vec k\).
Suy ra \(\overrightarrow {AB} = (8;0;0);\overrightarrow {AC} = (8;6;0);\overrightarrow {A{C^\prime }} = (8;6;4)\).
\({\rm{V`i }}\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {A{C^\prime }} + \overrightarrow {A{D^\prime }} } \right) = \frac{1}{2}\left( {\overrightarrow {A{C^\prime }} + \overrightarrow {AD} + \overrightarrow {A{A^\prime }} } \right) = \frac{1}{2}(8\vec i + 6\vec j + 4\vec k + 6\vec j + 4\vec k) = 4\vec i + 6\vec j + 4\vec k\) \({\rm{n^e n }}\overrightarrow {AM} = (4;6;4).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.