Câu hỏi:

29/07/2025 9 Lưu

Một công ty dịch vụ cho thuê xe hơi vào dịp

Tết với giá thuê mỗi chiếc xe hơi như sau: khách thuê tối thiểu phải thuê trọn ba ngày Tết (mùng \(1,2,3\)) với giá 1 triệu đồng/ngày; những ngày còn lại (nếu khách còn thuê) sẽ được tính giá thuê là 700 000 đồng/ngày. Giả sử \(T\) là tổng số tiền mà khách phải trả khi thuê một chiếc xe hơi của công ty và \(x\) là số ngày thuê của khách.

a) Hàm số \(T\) theo \(x\) là \(T = 900\,000 + 700\,000x\).

b) Điều kiện của \(x\) là \(x \in \mathbb{N}\).

c) Một khách hàng thuê một chiếc xe hơi công ty trong 7 ngày tết thì sẽ trả khoản tiền thuê là \(5\,800\,000\)(đồng).

d) Anh Bình định dành ra một khoản tối đa là 10 triệu đồng cho phí thuê xe đi chơi trong dịp tết, khi đó anh Bình có thể thuê xe của công ty trên tối đa 12 ngày.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Đúng. Ta có \(T = 3\,000\,000 + 700\,000\left( {x - 3} \right) = 900\,000 + 700\,000x\) (đồng) với điều kiện \(x \ge 3,x \in \mathbb{N}\).

b) Sai.

c) Đúng. Với \(x = 7\) thì \(T = 900\,000 + 700\,000 \cdot 7 = 5\,800\,000\) (đồng).

d) Sai. Xét bất phương trình

\[900\,000 + 700\,000x \le 10\,000\,000 \Leftrightarrow 9 + 7x \le 100 \Leftrightarrow x \le \frac{{91}}{7} = 13.\]

Vậy với khoản tiền 10 triệu đồng, anh Bình có thể thuê một chiếc xe tối đa 13 ngày.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có \[{S_{EFGH}}\] nhỏ nhất \[ \Leftrightarrow \]\[S = {S_{AEH}} + {S_{FCG}} + {S_{GDH}}\] lớn nhất.

Ta có \[2S = 2x + 3y + (6 - x)(6 - y) = xy - 4x - 3y + 36\] (1).

Mặt khác: \[\Delta AEH\] đồng dạng \[\Delta CGF\]nên \[\frac{{AE}}{{CG}} = \frac{{AH}}{{CF}}\] \[ \Rightarrow \] \[xy = 6\] (2).

Từ (1) và (2) suy ra \[2S = 42 - \left( {4x + \frac{{18}}{x}} \right)\].

Ta có: \[2{S_{max}}\]\[ \Leftrightarrow \] \[{\left( {4x + \frac{{18}}{x}} \right)_{min}}\]

Biểu thức \[{\left( {4x + \frac{{18}}{x}} \right)_{min}}\] \[ \Leftrightarrow \] \[4x = \frac{{18}}{x}\] \[ \Rightarrow \] \[x = \frac{{3\sqrt 2 }}{2}\] \[ \Rightarrow \] \[y = 2\sqrt 2 \].

Vậy \[x + y = \frac{{7\sqrt 2 }}{2}\].

Lời giải

Lời giải

Hàm số \(f\left( x \right) = \frac{1}{{x - 4}}\) xác định khi \(x - 4 \ne 0\) tức là \(x \ne 4\) nên tập xác định: \(D = \mathbb{R}\backslash \left\{ 4 \right\}\).

Lấy \({x_1},\,{x_2}\) là hai số tùy ý cùng thuộc mỗi khoảng \(\left( { - \infty ;\,4} \right),\,\left( {4;\, + \infty } \right)\) sao cho \({x_1} < {x_2}\) ta có

\(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1} - 4}} - \frac{1}{{{x_2} - 4}} = \frac{{{x_2} - {x_1}}}{{\left( {{x_1} - 4} \right)\left( {{x_2} - 4} \right)}}\).

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\).</>

Mặt khác, khi lấy \({x_1}\) và \({x_2}\) cùng nhỏ hơn 4 hoặc cùng lớn hơn 4 , ta đều có \({x_1} - 4\) và \({x_2} - 4\) luôn cùng dấu nên \(\left( {{x_1} - 4} \right)\left( {{x_2} - 4} \right) > 0\) hay \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\).

Ta kết luận hàm số nghịch biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\).

Vậy \({a_0} = 4\) và \(a_0^2 + 2024 = 16 + 2024 = 2040\).

Đáp án: \(2040\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP