Câu hỏi:

29/07/2025 27 Lưu

Cho hàm số \(y = 2x + m - 1\) (\(m\) là tham số thực) có đồ thị \(\left( {{C_m}} \right)\). Biết rằng đồ thị hàm số cắt hai trục tọa độ \(Ox\), \(Oy\) tại hai điểm \(A,B\) thỏa mãn \({S_{\Delta OAB}} = 4\), tính tổng tất các giá trị của tham số \(m\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đồ thị hàm số cắt trục \(Ox\) tại điểm \(A\left( {\frac{{1 - m}}{2};0} \right)\), cắt trục \(Oy\) tại điểm \(B\left( {0;m - 1} \right)\).

Tam giác \(OAB\) vuông tại \(O\) có diện tích là \({S_{\Delta OAB}} = \frac{1}{2} \cdot OA \cdot OB = \frac{1}{2}\left| {\frac{{1 - m}}{2}} \right|\left| {m - 1} \right| = 4\)

\( \Leftrightarrow {\left( {m - 1} \right)^2} = 16\)\( \Leftrightarrow \left[ \begin{array}{l}m = 5\\m = - 3\end{array} \right.\).

Tổng tất cả các giá trị của \(m\) bằng \(2\).

Đáp án: \(2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có \[{S_{EFGH}}\] nhỏ nhất \[ \Leftrightarrow \]\[S = {S_{AEH}} + {S_{FCG}} + {S_{GDH}}\] lớn nhất.

Ta có \[2S = 2x + 3y + (6 - x)(6 - y) = xy - 4x - 3y + 36\] (1).

Mặt khác: \[\Delta AEH\] đồng dạng \[\Delta CGF\]nên \[\frac{{AE}}{{CG}} = \frac{{AH}}{{CF}}\] \[ \Rightarrow \] \[xy = 6\] (2).

Từ (1) và (2) suy ra \[2S = 42 - \left( {4x + \frac{{18}}{x}} \right)\].

Ta có: \[2{S_{max}}\]\[ \Leftrightarrow \] \[{\left( {4x + \frac{{18}}{x}} \right)_{min}}\]

Biểu thức \[{\left( {4x + \frac{{18}}{x}} \right)_{min}}\] \[ \Leftrightarrow \] \[4x = \frac{{18}}{x}\] \[ \Rightarrow \] \[x = \frac{{3\sqrt 2 }}{2}\] \[ \Rightarrow \] \[y = 2\sqrt 2 \].

Vậy \[x + y = \frac{{7\sqrt 2 }}{2}\].

Lời giải

Lời giải

a) Đúng. Ta có \(T = 3\,000\,000 + 700\,000\left( {x - 3} \right) = 900\,000 + 700\,000x\) (đồng) với điều kiện \(x \ge 3,x \in \mathbb{N}\).

b) Sai.

c) Đúng. Với \(x = 7\) thì \(T = 900\,000 + 700\,000 \cdot 7 = 5\,800\,000\) (đồng).

d) Sai. Xét bất phương trình

\[900\,000 + 700\,000x \le 10\,000\,000 \Leftrightarrow 9 + 7x \le 100 \Leftrightarrow x \le \frac{{91}}{7} = 13.\]

Vậy với khoản tiền 10 triệu đồng, anh Bình có thể thuê một chiếc xe tối đa 13 ngày.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP