Cho tam giác \(ABC\), biết \(a = 13,b = 14,c = 15.\) Tính góc \(B\).
A. \(59^\circ 49'.\)
B. \(53^\circ 7'.\)
C. \(59^\circ 29'\,.\)
D. \(62^\circ 22'.\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{13}^2} + {{15}^2} - {{14}^2}}}{{2 \cdot 13 \cdot 15}} = \frac{{33}}{{65}}\).
Suy ra \(\widehat B \approx 59^\circ 29'\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Áp dụng định lí côsin cho tam giác \(ABC\), ta có:
\(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2 \cdot 4 \cdot 5}} = \frac{1}{8}\).
Mà \(\widehat A < 180^\circ \) nên \(\sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - \frac{1}{{64}}} = \frac{{3\sqrt 7 }}{8}\).
Áp dụng định lí sin, ta có: \[\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3\,\,\,{\rm{(cm)}}\].
Đáp án: 3.
Câu 2
A. \(12\).
B. \(3\).
C. \(6\).
D. \(24\).
Lời giải
Đáp án đúng là: C
Nửa chu vi tam giác \(ABC\) là: \(p = \frac{{12}}{2} = 6\).
Diện tích của tam giác \(ABC\) là: \(S = pr = 6 \cdot 1 = 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
