Trong không gian Oxyz, cho ba điểm \(A(a;0;0),B(0;b;0),C(0;0;c)\) với a, b, c đều khác 0 . Viết phương trình mặt phẳng \((P)\) đi qua ba điểm A, B, C.
Trong không gian Oxyz, cho ba điểm \(A(a;0;0),B(0;b;0),C(0;0;c)\) với a, b, c đều khác 0 . Viết phương trình mặt phẳng \((P)\) đi qua ba điểm A, B, C.
Câu hỏi trong đề: 21 bài tập Viết phương trình mặt phẳng (có lời giải) !!
Quảng cáo
Trả lời:
\((P)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB} = ( - a;b;0)\), \(\overrightarrow {AC} = ( - a;0;c)\), do đó \((P)\) có một vectơ pháp tuyến là \(\vec n = [\overrightarrow {AB} ,\overrightarrow {AC} ] = (bc;ac\); \(ab)\). Suy ra \((P)\) có phương trình:
\(bc(x - a) + ac(y - 0) + ab(z - 0) = 0\)\({\rm{ hay }}bcx + acy + abz - abc = 0.{\rm{ }}\)

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) nhận \(\overrightarrow {AB} = (3;1;2),\overrightarrow {AC} = (1;1; - 1)\) làm cặp vectơ chỉ phương nên có vectơ pháp tuyến là: \(\vec n = [\overrightarrow {AB} ,\overrightarrow {AC} ] = ( - 3;5;2){\rm{. }}\)
Mặt phẳng \(\left( {{A^\prime }{B^\prime }C} \right)\) đi qua \({A^\prime }(1;1;1)\) và nhận \(\vec n = ( - 3;5;2)\) làm một vectơ pháp tuyến nên có phương trình:
\( - 3(x - 1) + 5(y - 1) + 2(z - 1) = 0 \Leftrightarrow 3x - 5y - 2z + 4 = 0.\)
Lời giải
a) Mặt phẳng \((P)\) có một vectơ pháp tuyến là \(\vec n = (3; - 5;7)\). \((Q)\) có một vectơ pháp tuyến là \({\vec n^\prime } = (1;1;0)\).
b) Thay toạ độ điểm \(A\) vào phương trình của \((P)\), ta được:\(3.1 - 5.3 + 7.1 + 5 = 0.{\rm{ }}\)Vậy \(A\) thuộc \((P)\).
Thay toạ độ điểm \(B\) vào phương trình \((P)\), ta được:\(3.1 - 5.2 + 7.3 + 5 = 19 \ne 0.\)Vậy \(B\) không thuộc \((P)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.