Câu hỏi:
12/07/2024 22,977Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chứng minh rằng điểm M đối xứng với điểm N qua O.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ ABCD là hình bình hành có O là giao điểm hai đường chéo
⇒ OB = OD.
+ ABCD là hình bình hành ⇒ AB // CD ⇒ (Hai góc SLT).
Hai tam giác BOM và DON có:
⇒ ΔBOM = ΔDON (g.c.g)
⇒ OM = ON
⇒ O là trung điểm của MN
⇒ M đối xứng với N qua O.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, gọi F là điểm đối xứng với D qua C. Chứng minh rằng E đối xứng với điểm F qua điểm B.
Câu 2:
Vẽ điểm A' đối xứng với A qua B, vẽ điểm C' đối xứng với C qua B (h.81)
Câu 3:
Các câu sau đúng hay sai?
a) Tâm đối xứng của một đường thẳng là điểm bất kì của đường thẳng đó.
b) Trọng tâm của một tam giác là tâm đối xứng của tam giác đó.
c) Hai tam giác đối xứng với nhau qua một điểm thì có chu vi bằng nhau.
Câu 4:
Cho góc vuông xOy, điểm A nằm trong góc đó. Gọi B là điểm đối xứng với A qua Ox, gọi C là điểm đối xứng với A qua Oy. Chứng minh rằng điểm B đối xứng với điểm C qua O.
Câu 5:
Trên hình 80, các chữ cái N và S có tâm đối xứng, chữ cái E không có tâm đối xứng. Hãy tìm thêm một vài chữ cái khác (kiểu chữ in hoa) có tâm đối xứng.
Câu 6:
Trong mặt phẳng tọa độ, cho điểm H có tọa độ (3; 2). Hãy vẽ điểm K đối xứng với H qua gốc tọa độ và tìm tọa độ của K.
về câu hỏi!