Bài tập: Hình bình hành
56 người thi tuần này 4.6 3 K lượt thi 10 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
a) Ta chứng minh được BEDF là hình bình hành Þ BE = DF và .
Cách khác: DAEB = DCFD (c.g.c) suy ra BE = DF và .
b) Vì BEDF hình bình hành Þ ĐPCM
Lời giải
a) Chứng minh được AKCI là hình bình hành Þ DADI = DCBK (c-c-c-) Þ DADM = DCBN (g-c-g)
b) Vì AKCI là hình bình hành Þ ĐPCM.
c) Từ câu a) Þ DM= NB. Mặt khác MN = NB (định lý 1 của đường trung bình), từ đó suy ra ĐPCM
Lời giải
Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)
Lời giải
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
Lời giải
Gọi I trung điểm LE. Ta có DL//EN//OB và DL = EN = 0.5OB Þ DENL là hình bình hành. Tương tự chứng minh LMEF là hình bình hành. Từ đó suy ra EL,FM, DN đồng quy tại I
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.