Bài 1: Liên hệ giữa thứ tự và phép cộng
23 người thi tuần này 4.6 16.3 K lượt thi 10 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
a) 1,53 < 1,8;
b) - 2,37 > -2,41;
c)12/(-18) = (-2)/3
d)Ta có:
Lời giải
4 + (-3) = -7; 2 + (-3) = -1
⇒ ta có bất đẳng thức:-7 < -1
Lời giải
Khi cộng số c vào cả hai vế của bất đẳng thức - 4 < 2 thì được bất đẳng thức: -4+c < 2+c
Lời giải
√2 < 3 ⇒ √2 + 2 < 3 + 2 ⇒ √2 + 2 < 5
Lời giải
(Kí hiệu: VP = vế phải; VT = vế trái)
a) Ta có: (-2) + 3 = 1
Vì 1 < 2 nên (-2) + 3 < 2.
Do đó khẳng định (-2) + 3 ≥ 2 là sai.
b) Ta có: 2.(-3) = -6
⇒ Khẳng định -6 ≤ 2.(-3) là đúng.
c) Ta có: 4 + (-8) = -4
15 + (-8) = 7
Vì -4 < 7 nên 4 + (-8) < 15 + (-8)
Do đó khẳng định c) đúng
d) Với mọi số thực x ta có: x2 ≥ 0
⇒ x2 + 1 ≥ 1
⇒ Khẳng định d) đúng với mọi số thực x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.