Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
2521 lượt thi 10 câu hỏi
8785 lượt thi
Thi ngay
2158 lượt thi
2021 lượt thi
2772 lượt thi
1939 lượt thi
2255 lượt thi
1934 lượt thi
2264 lượt thi
1785 lượt thi
Câu 1:
Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC;
b) AM là đường trung trực của EF.
Câu 2:
Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:
a) EM song song vói DC;
b) I là trung điểm của AM;
c) DC = 4DI.
Câu 3:
Cho hình thang vuông ABCD tại A và D. Gọi E, F lần lượt là trung điểm của AD, BC. Chứng minh:
a) DAFD cân tại F;
b) BAF^=CDF^.
Câu 4:
Cho hình thang ABCD (AB//CD). Các đường phân giác ngoài của A^ và D^ cắt nhau tại E, các đường phân giác ngoài của B^ và C^cắt nhau tại F. Chứng minh:
a) EF song song với AB và CD;
b) EF có độ dài bằng nửa chu vi hình thang ABCD
Câu 5:
Cho hình thang ABCD (AB//CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BD, AC, BC. Chứng minh:
a) M, N, P, Q cùng nằm trên một đường thẳng;
b) NP = 12DC−AB.
Câu 6:
Cho hình thang ABCD (AB//CD) với AB = a, BC = b, CD = c và DA = d. Các tia phân giác của góc A và góc D cắt nhau tại E, các tia phân giác của B^ và C^ cắt nhau tại F. Gọi M, N theo thứ tự là trung điểm của AD và BC.
a) Chứng minh M, E, N, F cùng nằm trên một đường thẳng.
b) Tính độ dài MN, MF, FN theo a, b, c, d.
Câu 7:
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Từ H kẻ tia Hx vuông góc với AB tại P và tia Hy vuông góc vói AC tại Q. Trên các tia Hx, Hy lần lượt lấy các điếm D và E sao cho PH = PD, QH = QE. Chứng minh:
a) A là trung điểm của DE;
b) PQ = 12DE;
c) PQ = AH
Câu 8:
Cho tam giác ABC có AM là trung tuyến ứng vói BC. Trên cạnh AC lấy điểm D sao cho AD = (1/2) C. Kẻ Mx song song với BD và cắt AC tại E. Đoạn BD cắt AM tại I. Chứng minh:
a) AD = DE = EC;
b) SAIB = SIBM;
c)SABC = 2SIBC.
Câu 9:
Cho tứ giác ABCD. Gọi E, F, K lần lượt là trung điểm của AD, BC, AC.
a) Chứng minh EK song song với CD, FK song song với AB.
b) So sánh EF và 0.5( AB + CD).
c) Tìm điều kiện của tứ giác ABCD để ba điểm E, F, K thẳng hàng. Từ đó chứng minh EF = 0.5(AB + CD)
Câu 10:
Cho tứ giác ABCD. Có G là trung điểm của đoạn nối các trung điểm của hai đường chéo AC và BD. Gọi m là một đường thẳng không cắt cạnh nào của hình thang ABCD; Gọi A', B', C’, D’, G' lần lượt là hình chiếu của A, B, C, D, G lên đường thẳng m. Chứng minh GG' = 0.5(AA'+BB'+CC'+DD’)
2 Đánh giá
0%
50%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com