Câu hỏi:

13/07/2024 8,590

Cho tứ giác ABCD. Gọi E, F, K lần lượt là trung điểm của AD, BC, AC.

a) Chứng minh EK song song với CD, FK song song với AB.

b) So sánh EF và 0.5( AB + CD).

c) Tìm điều kiện của tứ giác ABCD để ba điểm E, F, K thẳng hàng. Từ đó chứng minh EF = 0.5(AB + CD)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) HS tự chứng minh.

b) Xét tam giác

EFK:EFEK+KF=1/2 CD+1/2 AB=1/2(AB+CD);

c) Để E, F, K thẳng hàng, khi đó EF đồng thời song song với AB và CD. Tức là tứ giác ABCD là hình thang (AB//CD)

Theo định lý 4, 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Mx đi qua trung điểm M của BC và song song với AC. Suy ra Mx đi qua trung điểm E của AB (theo Định lí 1).

Tương tự, ta được F cũng là trung điểm của AC. Khi đó EF trở thành đường trung bình của tam giác ABC;

b) Do ME và MF cũng là đường trung bình nên có ME = MF = AE = AF. Suy ra AM là đường trung trực của EF.

Lời giải

a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.

b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.

c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)

Tương tự, ta được: EM = (1/2)DC (2)

Từ (1) và (2) Þ DC = 4DI

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP