Câu hỏi:

02/08/2025 9 Lưu

Kết quả điều tra tổng thu nhập trong năm 2022 của một số hộ gia đình trong một địa phương được ghi lại ở bảng sau:

Tổng thu nhập

(triệu đồng)

[200; 250)

[250; 300)

[300; 350)

[350; 400)

[400; 450)

Số hộ gia đình

24

62

34

21

9

a) Hãy tìm các tứ phân vị Q1 và Q3.

b) Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Cỡ mẫu \(n = 150\)

Gọi \({x_1};{x_2}; \ldots ;{x_{150}}\) là mẫu số liệu gốc gồm thu nhập của 150 hộ gia đình được xếp theo thứ tự không giảm.

та có: \({x_1};{x_2}; \ldots ;{x_{24}} \in [200;250);{x_{25}}; \ldots ;{x_{86}} \in [250;300);{x_{87}}; \ldots ;{x_{120}} \in [300;350)\);

\({x_{121}}; \ldots ;{x_{141}} \in [350;400);{x_{142}}; \ldots ;{x_{150}} \in [400;450)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{38}} \in [250;300)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 250 + \frac{{\frac{{150}}{4} - 24}}{{62}}(300 - 250) = \frac{{16175}}{{62}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{113}} \in [300;350)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 300 + \frac{{\frac{{3.150}}{4} - (24 + 62)}}{{34}}(350 - 300) = \frac{{11525}}{{34}}\)

b) Doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng \(\left[ {{Q_1};{Q_3}} \right) = [260,89;338,97)\) (triệu đồng)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lớp 12A

Khoảng biến thiên: \({{\rm{R}}_1} = 175 - 145 = 30\).

Cơ mẫu \({\rm{n}} = 1 + 0 + 15 + 12 + 10 + 5 = 43\).

Gọi \({{\rm{x}}_1};{{\rm{x}}_2}; \ldots ;{{\rm{x}}_{43}}\) là chiều cao của 43 học sinh lớp \(12\;{\rm{A}}\) được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({{\rm{x}}_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{43}}{4} - 1}}{{15}} \cdot (160 - 155) = 158,25\).

Tứ phân vị thứ ba của mẫu số liệu là x33 thuộc nhóm \([165;170)\) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_3} = 165 + \frac{{\frac{{43,3}}{4} - 28}}{{10}} \cdot (170 - 165) = 167,125\).

Khoảng tứ phân vị là \({{\rm{D}}_{{\rm{1Q}}}} = 167,125 - 158,25 = 8,875\).

Lớp 12B

Khoảng biến thiên: \({R_2} = 175 - 155 = 20\).

Cỏ mẫu \(n = 17 + 10 + 9 + 6 = 42\).

Gọi \({{\rm{y}}_1};{{\rm{y}}_2}; \ldots ;{{\rm{y}}_{42}}\) là chiều cao của 42 học sinh lớp \(12\;{\rm{B}}\) và được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({y_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{42}}{4} - 0}}{{17}} \cdot (160 - 155) \approx 158,1\).

Tứ phân vị thứ ba của mẫu số liệu là \({{\rm{y}}_{32}}\) thuộc nhóm [165;170) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_2} = 165 + \frac{{\frac{{423}}{4} - 27}}{9} \cdot (170 - 165) = 167,5\).

Khoảng tứ phân vị là: \({R_{2Q}} = 167,5 - 158,1 = 9,4\).

b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này, ta nên dùng khoảng tứ phân vị vì khoảng tứ phân vị chỉ phụ thuộc vào nửa giửa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.

Lời giải

a) Bảng số liệu về lượng mưa của thành phố A
Media VietJack
b) \[{Q_1} \approx 67\]; \[{Q_3} = 275;{\Delta _Q} = {Q_3} - {Q_1} = 208\]
Kết quả tìm được cho thấy: Hằng năm, ở thành phố A có 3 tháng có lượng mưa trung bình không vượt quá 67 mm và 3 tháng có lượng mưa trung bình ít nhất là 275 mm. Trong 6 tháng còn lại, lượng mưa trung bình đạt từ 67 mm đến 275 mm và như vậy là lượng mưa của 6 tháng này có thể chênh lệch nhau đến 208 mm.