Câu hỏi:

19/08/2025 331 Lưu

Hãy so sánh khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình và bác An mỗi ngày trong tháng 9/2022 được thống kê trong biểu đồ dưới đây:

Hãy so sánh khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình và bác An  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu \(n = 30\);

Gọi \({x_1};{x_2}; \ldots ;{x_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác An được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_{25}} \in [20;25);{x_{26}}; \ldots ;{x_{30}} \in [25;30)\);

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 20 + \frac{{\frac{{30}}{4}}}{{25}}(25 - 20) = \frac{{43}}{2}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in [20;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 20 + \frac{{\frac{{3.30}}{4}}}{{25}}(25 - 20) = \frac{{49}}{2}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3\)

Gọi \({y_1};{y_2}; \ldots ;{y_{30}}\) là mẫu số liệu gốc về thời gian tập thề dục buổi sáng mỗi ngày của bác Bình được xếp theo thứ tự không giảm.

Ta có: \({y_1};{y_2}; \ldots ;{y_5} \in [15;20);{y_6}; \ldots ;{y_{17}} \in [20;25);{y_{18}}; \ldots ;{y_{25}} \in [25;30);{y_{26}};{y_{27}};{y_{28}} \in [30;35)\); \({y_{29}};{y_{30}} \in [35;40)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \(Q_1^\prime  = 20 + \frac{{\frac{{30}}{4}}}{{12}}(25 - 20) = \frac{{185}}{8}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{23}} \in [25;30)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 25 + \frac{{\frac{{3.00}}{4} - (5 + 12)}}{8}(30 - 25) = \frac{{455}}{{16}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime  = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{85}}{{16}}\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình lớn hơn bác An

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cỡ mẫu \(n = 25\)

Gọi \({x_1};{x_2}; \ldots ;{x_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp \(12{\rm{C}}\) được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2} \in [155;160);{x_3}; \ldots ;{x_9} \in [160;165);{x_{10}}; \ldots ;{x_{21}} \in [165;170);{x_{22}}; \ldots ;{x_{24}} \in [170;175)\); \({x_{25}} \in [180;185)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_6} + {x_7}} \right) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 160 + \frac{{\frac{{25}}{4} - 2}}{7}(165 - 160) = \frac{{4565}}{{28}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 165 + \frac{{\frac{{3.25}}{4} - (2 + 7)}}{{12}}(170 - 165) = \frac{{2705}}{{16}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{675}}{{12}}\)

Gọi \({y_1};{y_2}; \ldots ;{y_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp \(12{\rm{D}}\) được xếp theo thứ tự không giảm.

та có: \({y_1};{y_2}; \ldots ;{y_5} \in [155;160);{y_6}; \ldots ;{y_{14}} \in [160;165);{y_{15}}; \ldots ;{y_{22}} \in [165;170)\);

\({y_{23}};{{\rm{y}}_{24}} \in [170;175);{y_{25}} \in [175;180)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_6} + {y_7}} \right) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \(Q_1^\prime  = 160 + \frac{{\frac{{25}}{4} - 5}}{9}(165 - 160) = \frac{{5785}}{{36}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 165 + \frac{{\frac{{3.25}}{4} - (5 + 9)}}{8}(170 - 165) = \frac{{5375}}{{32}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime  = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{2095}}{{288}}\)

Có \({\Delta _Q}^\prime  > {\Delta _Q}\) nên chiều cao của các bạn học sinh nữ lớp \(12{\rm{D}}\) có độ phân tán lơn hơn lớp \(12{\rm{C}}\)

Lời giải

Lớp 12A

Khoảng biến thiên: \({{\rm{R}}_1} = 175 - 145 = 30\).

Cơ mẫu \({\rm{n}} = 1 + 0 + 15 + 12 + 10 + 5 = 43\).

Gọi \({{\rm{x}}_1};{{\rm{x}}_2}; \ldots ;{{\rm{x}}_{43}}\) là chiều cao của 43 học sinh lớp \(12\;{\rm{A}}\) được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({{\rm{x}}_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{43}}{4} - 1}}{{15}} \cdot (160 - 155) = 158,25\).

Tứ phân vị thứ ba của mẫu số liệu là x33 thuộc nhóm \([165;170)\) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_3} = 165 + \frac{{\frac{{43,3}}{4} - 28}}{{10}} \cdot (170 - 165) = 167,125\).

Khoảng tứ phân vị là \({{\rm{D}}_{{\rm{1Q}}}} = 167,125 - 158,25 = 8,875\).

Lớp 12B

Khoảng biến thiên: \({R_2} = 175 - 155 = 20\).

Cỏ mẫu \(n = 17 + 10 + 9 + 6 = 42\).

Gọi \({{\rm{y}}_1};{{\rm{y}}_2}; \ldots ;{{\rm{y}}_{42}}\) là chiều cao của 42 học sinh lớp \(12\;{\rm{B}}\) và được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({y_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{42}}{4} - 0}}{{17}} \cdot (160 - 155) \approx 158,1\).

Tứ phân vị thứ ba của mẫu số liệu là \({{\rm{y}}_{32}}\) thuộc nhóm [165;170) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_2} = 165 + \frac{{\frac{{423}}{4} - 27}}{9} \cdot (170 - 165) = 167,5\).

Khoảng tứ phân vị là: \({R_{2Q}} = 167,5 - 158,1 = 9,4\).

b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này, ta nên dùng khoảng tứ phân vị vì khoảng tứ phân vị chỉ phụ thuộc vào nửa giửa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.