Câu hỏi:

02/08/2025 29 Lưu

Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:

Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau: (ảnh 1)

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của từng mẫu số liệu ghép nhóm ứng với mỗi khu vực A và B.

b) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực nào có độ tuổi kết hôn đồng đều hơn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: 34 - \(19 = 15\) (tuổi)

Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: 31 - \(19 = 12\) (tuổi)

Cơ mẫu \(n = 100\)

Gọi \({x_1};{x_2}; \ldots ;{x_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực \({\rm{A}}\) được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_{10}} \in [19;22);{x_{11}}; \ldots ;{x_{37}} \in [22;25);{x_{38}}; \ldots ;{x_{68}} \in [25;28);{x_{69}}; \ldots ;{x_{93}} \in [28;31)\); \({x_{94}}; \ldots ;{x_{100}} \in [31;34)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 22 + \frac{{\frac{{100}}{4} - 10}}{{27}}(25 - 22) = \frac{{71}}{3}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in [28;31)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 28 + \frac{{\frac{{3.100}}{4} - (10 + 27 + 31)}}{{25}}(31 - 28) = \frac{{721}}{{25}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{388}}{{75}}\)

Gọi \({y_1};{y_2}; \ldots ;{y_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực \({\rm{B}}\) được xếp theo thứ tự không giảm.

Ta có: \({y_1};{y_2}; \ldots ;{y_{47}} \in [19;22);{y_{48}}; \ldots ;{y_{87}} \in [22;25);{y_{88}}; \ldots ;{y_{98}} \in [25;30);{y_{99}};{y_{100}} \in [28;31)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{25}} + {y_{26}}} \right) \in [19;22)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime  = 19 + \frac{{\frac{{100}}{4}}}{{47}}(22 - 19) = \frac{{968}}{{47}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{75}} + {y_{76}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 22 + \frac{{\frac{{3.100}}{4} - 47}}{{40}}(25 - 22) = \frac{{241}}{{10}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime  = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{1647}}{{470}}\)

b) Có \({\Delta _Q}^\prime  < {\Delta _Q}\) nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng số liệu về lượng mưa của thành phố A
Media VietJack
b) \[{Q_1} \approx 67\]; \[{Q_3} = 275;{\Delta _Q} = {Q_3} - {Q_1} = 208\]
Kết quả tìm được cho thấy: Hằng năm, ở thành phố A có 3 tháng có lượng mưa trung bình không vượt quá 67 mm và 3 tháng có lượng mưa trung bình ít nhất là 275 mm. Trong 6 tháng còn lại, lượng mưa trung bình đạt từ 67 mm đến 275 mm và như vậy là lượng mưa của 6 tháng này có thể chênh lệch nhau đến 208 mm.

Lời giải

Cỡ mẫu \(n = 50\)

Gọi \({x_1};{x_2}; \ldots ;{x_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nam giới ở 50 quốc gia được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_4} \in [50;55);{x_5}; \ldots ;{x_{11}} \in [55;60);{x_{12}}; \ldots ;{x_{15}} \in [60;65);{x_{16}}; \ldots ;{x_{21}} \in [65;70)\); \({x_{22}}; \ldots ;{x_{36}} \in [70;75);{x_{37}}; \ldots ;{x_{48}} \in [75;80);{x_{49}};{x_{50}} \in [80;85)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [60;65)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 60 + \frac{{\frac{{50}}{4} - (4 + 7)}}{4}(65 - 60) = 71,875\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [75;80)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 75 + \frac{{\frac{{3.50}}{4} - (4 + 7 + 4 + 6 + 15)}}{{12}}(80 - 75) = 75,625\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3,75\)

Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nữ giới ở 50 quốc gia được xếp theo thứ tự không giảm.

та co: \({y_1}; \ldots ;{y_3} \in [50;55);{y_4}; \ldots ;{y_7} \in [55;60);{y_8}; \ldots ;{y_{12}} \in [60;65);{y_{13}}; \ldots ;{y_{15}} \in [65;70)\);

\({y_{16}}; \ldots ;{y_{22}} \in [70;75);{y_{23}}; \ldots ;{y_{36}} \in [75;80);{y_{37}}; \ldots ;{y_{49}} \in [80;85);{y_{50}} \in [85;90)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [65;70)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime  = 65 + \frac{{\frac{{50}}{4} - (3 + 4 + 5)}}{3}(70 - 65) = \frac{{395}}{6}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [80;85)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 80 + \frac{{\frac{{3.50}}{4} - (3 + 4 + 5 + 3 + 7 + 14)}}{{13}}(85 - 80) = \frac{{2095}}{{26}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta {Q^\prime } = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{575}}{{39}}\)

b) Có \({\Delta _Q}^\prime  > {\Delta _Q}\) nên độ tuổi trung bình của nam giới đồng đều hơn.