Cho bảng tần số ghép nhóm về số tiền (đơn vị: nghìn đồng ) mà 60 khách mua sách ở một cửa hàng trong một ngày
a) Tính khoảng biến thiên của mẫu số liệu trên.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên
Cho bảng tần số ghép nhóm về số tiền (đơn vị: nghìn đồng ) mà 60 khách mua sách ở một cửa hàng trong một ngày

a) Tính khoảng biến thiên của mẫu số liệu trên.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên
Câu hỏi trong đề: 19 bài tập Khoảng tứ phân vị (có lời giải) !!
Quảng cáo
Trả lời:

a) Trong mẫu số liệu ghép nhóm ở Bảng 8 , ta có: đầu mút trái của nhóm 1 là \({{\rm{a}}_1} = 40\), đầu mút phải của nhóm 5 là \({{\rm{a}}_6} = 90\).
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
\({\rm{R}} = {{\rm{a}}_6} - {{\rm{a}}_1} = 90 - 40 = 50\) (nghìn đồng).
b) Từ Bảng 8 ta có bảng sau:

Số phần tử của mẫu là \({\rm{n}} = 60\).
Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) mà \(9 < 15 < 28\). Suy ra nhóm 3 là nhóm dầu tiên có tần số tích lūy lớn hơn hoặc bằng 15 . Xét nhóm 3 là nhóm \([60;70)\) có \(s = 60;h = 10;{n_3} = 19\) và nhóm 2 là nhóm \([50;60)\) có \({\rm{c}}{{\rm{f}}_2} = 9\).
Tứ phân vị thứ nhất là: \({Q_1} = 60 + \left( {\frac{{15 - 9}}{{19}}} \right) \cdot 10 = \frac{{1200}}{{19}}{\rm{ (nghìn đồng)}}{\rm{. }}\)
Tứ phân vị thứ ba là: \({Q_3} = 70 + \left( {\frac{{45 - 28}}{{23}}} \right) \cdot 10 = \frac{{1780}}{{23}}{\rm{ (nghìn đồng)}}{\rm{. }}\)
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
\({\Delta _Q} = {Q_3} - {Q_1} = \frac{{1780}}{{23}} - \frac{{1200}}{{19}} \approx 14,23{\rm{ (nghìn đồng)}}{\rm{. }}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Lời giải
Cỡ mẫu \(n = 50\)
Gọi \({x_1};{x_2}; \ldots ;{x_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nam giới ở 50 quốc gia được xếp theo thứ tự không giảm.
Ta có: \({x_1};{x_2}; \ldots ;{x_4} \in [50;55);{x_5}; \ldots ;{x_{11}} \in [55;60);{x_{12}}; \ldots ;{x_{15}} \in [60;65);{x_{16}}; \ldots ;{x_{21}} \in [65;70)\); \({x_{22}}; \ldots ;{x_{36}} \in [70;75);{x_{37}}; \ldots ;{x_{48}} \in [75;80);{x_{49}};{x_{50}} \in [80;85)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [60;65)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 60 + \frac{{\frac{{50}}{4} - (4 + 7)}}{4}(65 - 60) = 71,875\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [75;80)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 75 + \frac{{\frac{{3.50}}{4} - (4 + 7 + 4 + 6 + 15)}}{{12}}(80 - 75) = 75,625\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3,75\)
Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nữ giới ở 50 quốc gia được xếp theo thứ tự không giảm.
та co: \({y_1}; \ldots ;{y_3} \in [50;55);{y_4}; \ldots ;{y_7} \in [55;60);{y_8}; \ldots ;{y_{12}} \in [60;65);{y_{13}}; \ldots ;{y_{15}} \in [65;70)\);
\({y_{16}}; \ldots ;{y_{22}} \in [70;75);{y_{23}}; \ldots ;{y_{36}} \in [75;80);{y_{37}}; \ldots ;{y_{49}} \in [80;85);{y_{50}} \in [85;90)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [65;70)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 65 + \frac{{\frac{{50}}{4} - (3 + 4 + 5)}}{3}(70 - 65) = \frac{{395}}{6}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [80;85)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 80 + \frac{{\frac{{3.50}}{4} - (3 + 4 + 5 + 3 + 7 + 14)}}{{13}}(85 - 80) = \frac{{2095}}{{26}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta {Q^\prime } = {Q_3}^\prime - {Q_1}^\prime = \frac{{575}}{{39}}\)
b) Có \({\Delta _Q}^\prime > {\Delta _Q}\) nên độ tuổi trung bình của nam giới đồng đều hơn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.