Câu hỏi:

02/08/2025 107 Lưu

Cho bảng tần số ghép nhóm  về số tiền (đơn vị: nghìn đồng ) mà 60 khách mua sách ở một cửa hàng trong một ngày

Cho bảng tần số ghép nhóm  về số tiền (đơn vị: nghìn đồng ) mà 60 khách mua sách ở một cửa hàng trong một ngày (ảnh 1)

a) Tính khoảng biến thiên của mẫu số liệu trên.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Trong mẫu số liệu ghép nhóm ở Bảng 8 , ta có: đầu mút trái của nhóm 1 là \({{\rm{a}}_1} = 40\), đầu mút phải của nhóm 5 là \({{\rm{a}}_6} = 90\).

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

\({\rm{R}} = {{\rm{a}}_6} - {{\rm{a}}_1} = 90 - 40 = 50\) (nghìn đồng).

b) Từ Bảng 8 ta có bảng sau:

Cho bảng tần số ghép nhóm  về số tiền (đơn vị: nghìn đồng ) mà 60 khách mua sách ở một cửa hàng trong một ngày (ảnh 2)

Số phần tử của mẫu là \({\rm{n}} = 60\).

Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) mà \(9 < 15 < 28\). Suy ra nhóm 3 là nhóm dầu tiên có tần số tích lūy lớn hơn hoặc bằng 15 . Xét nhóm 3 là nhóm \([60;70)\) có \(s = 60;h = 10;{n_3} = 19\) và nhóm 2 là nhóm \([50;60)\) có \({\rm{c}}{{\rm{f}}_2} = 9\).

Tứ phân vị thứ nhất là: \({Q_1} = 60 + \left( {\frac{{15 - 9}}{{19}}} \right) \cdot 10 = \frac{{1200}}{{19}}{\rm{ (nghìn đồng)}}{\rm{. }}\)

Tứ phân vị thứ ba là: \({Q_3} = 70 + \left( {\frac{{45 - 28}}{{23}}} \right) \cdot 10 = \frac{{1780}}{{23}}{\rm{ (nghìn đồng)}}{\rm{. }}\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

\({\Delta _Q} = {Q_3} - {Q_1} = \frac{{1780}}{{23}} - \frac{{1200}}{{19}} \approx 14,23{\rm{ (nghìn  đồng)}}{\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng số liệu về lượng mưa của thành phố A
Media VietJack
b) \[{Q_1} \approx 67\]; \[{Q_3} = 275;{\Delta _Q} = {Q_3} - {Q_1} = 208\]
Kết quả tìm được cho thấy: Hằng năm, ở thành phố A có 3 tháng có lượng mưa trung bình không vượt quá 67 mm và 3 tháng có lượng mưa trung bình ít nhất là 275 mm. Trong 6 tháng còn lại, lượng mưa trung bình đạt từ 67 mm đến 275 mm và như vậy là lượng mưa của 6 tháng này có thể chênh lệch nhau đến 208 mm.

Lời giải

Cỡ mẫu \(n = 50\)

Gọi \({x_1};{x_2}; \ldots ;{x_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nam giới ở 50 quốc gia được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_4} \in [50;55);{x_5}; \ldots ;{x_{11}} \in [55;60);{x_{12}}; \ldots ;{x_{15}} \in [60;65);{x_{16}}; \ldots ;{x_{21}} \in [65;70)\); \({x_{22}}; \ldots ;{x_{36}} \in [70;75);{x_{37}}; \ldots ;{x_{48}} \in [75;80);{x_{49}};{x_{50}} \in [80;85)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [60;65)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 60 + \frac{{\frac{{50}}{4} - (4 + 7)}}{4}(65 - 60) = 71,875\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [75;80)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 75 + \frac{{\frac{{3.50}}{4} - (4 + 7 + 4 + 6 + 15)}}{{12}}(80 - 75) = 75,625\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3,75\)

Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nữ giới ở 50 quốc gia được xếp theo thứ tự không giảm.

та co: \({y_1}; \ldots ;{y_3} \in [50;55);{y_4}; \ldots ;{y_7} \in [55;60);{y_8}; \ldots ;{y_{12}} \in [60;65);{y_{13}}; \ldots ;{y_{15}} \in [65;70)\);

\({y_{16}}; \ldots ;{y_{22}} \in [70;75);{y_{23}}; \ldots ;{y_{36}} \in [75;80);{y_{37}}; \ldots ;{y_{49}} \in [80;85);{y_{50}} \in [85;90)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [65;70)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime  = 65 + \frac{{\frac{{50}}{4} - (3 + 4 + 5)}}{3}(70 - 65) = \frac{{395}}{6}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [80;85)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 80 + \frac{{\frac{{3.50}}{4} - (3 + 4 + 5 + 3 + 7 + 14)}}{{13}}(85 - 80) = \frac{{2095}}{{26}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta {Q^\prime } = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{575}}{{39}}\)

b) Có \({\Delta _Q}^\prime  > {\Delta _Q}\) nên độ tuổi trung bình của nam giới đồng đều hơn.