Câu hỏi:

02/08/2025 82 Lưu

Cho bảng tần số ghép nhóm  thống kê mức lương của một công ty ( đơn vị: triệu đồng)

a) Tính khoảng biến thiên của mẫu số liệu trên là:

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là

Cho bảng tần số ghép nhóm  thống kê mức lương của một công ty ( đơn vị: triệu đồng) (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Trong mẫu số liệu ghép nhóm ở bảng, ta có: đầu mút trái của nhóm 1 là \({{\rm{a}}_1} = 10\), đầu mút phải của nhóm 6 là \({{\rm{a}}_7} = 40\).

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R=a7a1=8020=60. 

b) Từ Bảng trên ta có bảng sau:

Cho bảng tần số ghép nhóm  thống kê mức lương của một công ty ( đơn vị: triệu đồng) (ảnh 2)

Số phần tử của mẫu là \({\rm{n}} = 60\).

Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\). Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15 . Xét nhóm 1 là nhóm \([10;15)\) có \({\rm{s}} = 10;{\rm{h}} = 5;{{\rm{n}}_1} = 15\).

Áp dụng công thức, ta có tứ phân vị thứ nhất là: Q1=20+252510=30

Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà \(43 < 45 < 53\). Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lūy lớn hơn hoặc bẳng 45 . Xét nhóm 4 là nhóm \([25;30)\) có \(t = 25;1 = 5;{n_4} = 10\) và nhóm 3 là nhóm \([20;25)\) có cf \(3 = 43\).

Áp dụng công thức, ta có tứ phân vị thứ ba là: Q3=50+75651510=1703

Vậy khoảng tứ phân vị của mẵu số liệu ghép nhóm đã cho là: ΔQ=Q3Q1=170330=80326,67

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng số liệu về lượng mưa của thành phố A
Media VietJack
b) \[{Q_1} \approx 67\]; \[{Q_3} = 275;{\Delta _Q} = {Q_3} - {Q_1} = 208\]
Kết quả tìm được cho thấy: Hằng năm, ở thành phố A có 3 tháng có lượng mưa trung bình không vượt quá 67 mm và 3 tháng có lượng mưa trung bình ít nhất là 275 mm. Trong 6 tháng còn lại, lượng mưa trung bình đạt từ 67 mm đến 275 mm và như vậy là lượng mưa của 6 tháng này có thể chênh lệch nhau đến 208 mm.

Lời giải

Cỡ mẫu \(n = 50\)

Gọi \({x_1};{x_2}; \ldots ;{x_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nam giới ở 50 quốc gia được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_4} \in [50;55);{x_5}; \ldots ;{x_{11}} \in [55;60);{x_{12}}; \ldots ;{x_{15}} \in [60;65);{x_{16}}; \ldots ;{x_{21}} \in [65;70)\); \({x_{22}}; \ldots ;{x_{36}} \in [70;75);{x_{37}}; \ldots ;{x_{48}} \in [75;80);{x_{49}};{x_{50}} \in [80;85)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [60;65)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 60 + \frac{{\frac{{50}}{4} - (4 + 7)}}{4}(65 - 60) = 71,875\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [75;80)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 75 + \frac{{\frac{{3.50}}{4} - (4 + 7 + 4 + 6 + 15)}}{{12}}(80 - 75) = 75,625\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3,75\)

Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nữ giới ở 50 quốc gia được xếp theo thứ tự không giảm.

та co: \({y_1}; \ldots ;{y_3} \in [50;55);{y_4}; \ldots ;{y_7} \in [55;60);{y_8}; \ldots ;{y_{12}} \in [60;65);{y_{13}}; \ldots ;{y_{15}} \in [65;70)\);

\({y_{16}}; \ldots ;{y_{22}} \in [70;75);{y_{23}}; \ldots ;{y_{36}} \in [75;80);{y_{37}}; \ldots ;{y_{49}} \in [80;85);{y_{50}} \in [85;90)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [65;70)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime  = 65 + \frac{{\frac{{50}}{4} - (3 + 4 + 5)}}{3}(70 - 65) = \frac{{395}}{6}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [80;85)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 80 + \frac{{\frac{{3.50}}{4} - (3 + 4 + 5 + 3 + 7 + 14)}}{{13}}(85 - 80) = \frac{{2095}}{{26}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta {Q^\prime } = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{575}}{{39}}\)

b) Có \({\Delta _Q}^\prime  > {\Delta _Q}\) nên độ tuổi trung bình của nam giới đồng đều hơn.