Câu hỏi:

19/08/2025 52 Lưu

Cho bảng tần số ghép nhóm  về độ tuổi của cư dân trong một khu phố

Cho bảng tần số ghép nhóm  về độ tuổi của cư dân trong một khu phố (ảnh 1)

a) Tính khoảng biến thiên của mẫu số liệu trên.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Trong mẫu số liệu ghép nhóm ở bảng số liệu, ta có: đầu mút trái của nhóm 1 là \({{\rm{a}}_1} = 20\), đầu mút phải của nhóm 6 là \({{\rm{a}}_7} = 80\).

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

\({\rm{R}} = {{\rm{a}}_7} - {{\rm{a}}_1} = 80 - 20 = 60.{\rm{ }}\)

b) Từ Bảng 10 ta có bảng sau:

Cho bảng tần số ghép nhóm  về độ tuổi của cư dân trong một khu phố (ảnh 2)

Số phần tử của mẫu là \({\rm{n}} = 100\).

Ta có: \(\frac{n}{4} = \frac{{100}}{4} = 25\). Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lūy lớn hơn hoặc bằng 25 . Xét nhóm 1 là nhóm \([20;30)\) có \({\rm{s}} = 20;{\rm{h}} = 10;{{\rm{n}}_1} = 25\).

Áp dụng công thức, ta có tứ phân vị thứ nhất là: \({Q_1} = 20 + \frac{{25}}{{25}} \cdot 10 = 30\)

Ta có: \(\frac{{3n}}{4} = \frac{{3 \cdot 100}}{4} = 75\) mà \(65 < 75 < 80\). Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75 . Xét nhóm 4 là nhóm \([50;60)\) có \(t = 50;I = 10;{n_4} = 15\) và nhóm 3 là nhóm \([40;50)\) có \({\rm{c}}{{\rm{f}}_3} = 65\).

Áp dụng công thức, ta có tứ phân vị thứ ba là: \({Q_3} = 50 + \left( {\frac{{75 - 65}}{{15}}} \right) \cdot 10 = \frac{{170}}{3}\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{170}}{3} - 30 = \frac{{80}}{3} \approx 26,67\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng số liệu về lượng mưa của thành phố A
Media VietJack
b) \[{Q_1} \approx 67\]; \[{Q_3} = 275;{\Delta _Q} = {Q_3} - {Q_1} = 208\]
Kết quả tìm được cho thấy: Hằng năm, ở thành phố A có 3 tháng có lượng mưa trung bình không vượt quá 67 mm và 3 tháng có lượng mưa trung bình ít nhất là 275 mm. Trong 6 tháng còn lại, lượng mưa trung bình đạt từ 67 mm đến 275 mm và như vậy là lượng mưa của 6 tháng này có thể chênh lệch nhau đến 208 mm.

Lời giải

Cỡ mẫu \(n = 50\)

Gọi \({x_1};{x_2}; \ldots ;{x_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nam giới ở 50 quốc gia được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_4} \in [50;55);{x_5}; \ldots ;{x_{11}} \in [55;60);{x_{12}}; \ldots ;{x_{15}} \in [60;65);{x_{16}}; \ldots ;{x_{21}} \in [65;70)\); \({x_{22}}; \ldots ;{x_{36}} \in [70;75);{x_{37}}; \ldots ;{x_{48}} \in [75;80);{x_{49}};{x_{50}} \in [80;85)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [60;65)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 60 + \frac{{\frac{{50}}{4} - (4 + 7)}}{4}(65 - 60) = 71,875\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [75;80)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 75 + \frac{{\frac{{3.50}}{4} - (4 + 7 + 4 + 6 + 15)}}{{12}}(80 - 75) = 75,625\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3,75\)

Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về tuổi thọ trung bình của nữ giới ở 50 quốc gia được xếp theo thứ tự không giảm.

та co: \({y_1}; \ldots ;{y_3} \in [50;55);{y_4}; \ldots ;{y_7} \in [55;60);{y_8}; \ldots ;{y_{12}} \in [60;65);{y_{13}}; \ldots ;{y_{15}} \in [65;70)\);

\({y_{16}}; \ldots ;{y_{22}} \in [70;75);{y_{23}}; \ldots ;{y_{36}} \in [75;80);{y_{37}}; \ldots ;{y_{49}} \in [80;85);{y_{50}} \in [85;90)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [65;70)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime  = 65 + \frac{{\frac{{50}}{4} - (3 + 4 + 5)}}{3}(70 - 65) = \frac{{395}}{6}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [80;85)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 80 + \frac{{\frac{{3.50}}{4} - (3 + 4 + 5 + 3 + 7 + 14)}}{{13}}(85 - 80) = \frac{{2095}}{{26}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta {Q^\prime } = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{575}}{{39}}\)

b) Có \({\Delta _Q}^\prime  > {\Delta _Q}\) nên độ tuổi trung bình của nam giới đồng đều hơn.