Câu hỏi:

02/08/2025 8 Lưu

Cho bảng tần số ghép nhóm  về độ tuổi của cư dân trong một khu phố

Cho bảng tần số ghép nhóm  về độ tuổi của cư dân trong một khu phố (ảnh 1)

a) Tính khoảng biến thiên của mẫu số liệu trên.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Trong mẫu số liệu ghép nhóm ở bảng số liệu, ta có: đầu mút trái của nhóm 1 là \({{\rm{a}}_1} = 20\), đầu mút phải của nhóm 6 là \({{\rm{a}}_7} = 80\).

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

\({\rm{R}} = {{\rm{a}}_7} - {{\rm{a}}_1} = 80 - 20 = 60.{\rm{ }}\)

b) Từ Bảng 10 ta có bảng sau:

Cho bảng tần số ghép nhóm  về độ tuổi của cư dân trong một khu phố (ảnh 2)

Số phần tử của mẫu là \({\rm{n}} = 100\).

Ta có: \(\frac{n}{4} = \frac{{100}}{4} = 25\). Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lūy lớn hơn hoặc bằng 25 . Xét nhóm 1 là nhóm \([20;30)\) có \({\rm{s}} = 20;{\rm{h}} = 10;{{\rm{n}}_1} = 25\).

Áp dụng công thức, ta có tứ phân vị thứ nhất là: \({Q_1} = 20 + \frac{{25}}{{25}} \cdot 10 = 30\)

Ta có: \(\frac{{3n}}{4} = \frac{{3 \cdot 100}}{4} = 75\) mà \(65 < 75 < 80\). Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75 . Xét nhóm 4 là nhóm \([50;60)\) có \(t = 50;I = 10;{n_4} = 15\) và nhóm 3 là nhóm \([40;50)\) có \({\rm{c}}{{\rm{f}}_3} = 65\).

Áp dụng công thức, ta có tứ phân vị thứ ba là: \({Q_3} = 50 + \left( {\frac{{75 - 65}}{{15}}} \right) \cdot 10 = \frac{{170}}{3}\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{170}}{3} - 30 = \frac{{80}}{3} \approx 26,67\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lớp 12A

Khoảng biến thiên: \({{\rm{R}}_1} = 175 - 145 = 30\).

Cơ mẫu \({\rm{n}} = 1 + 0 + 15 + 12 + 10 + 5 = 43\).

Gọi \({{\rm{x}}_1};{{\rm{x}}_2}; \ldots ;{{\rm{x}}_{43}}\) là chiều cao của 43 học sinh lớp \(12\;{\rm{A}}\) được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({{\rm{x}}_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{43}}{4} - 1}}{{15}} \cdot (160 - 155) = 158,25\).

Tứ phân vị thứ ba của mẫu số liệu là x33 thuộc nhóm \([165;170)\) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_3} = 165 + \frac{{\frac{{43,3}}{4} - 28}}{{10}} \cdot (170 - 165) = 167,125\).

Khoảng tứ phân vị là \({{\rm{D}}_{{\rm{1Q}}}} = 167,125 - 158,25 = 8,875\).

Lớp 12B

Khoảng biến thiên: \({R_2} = 175 - 155 = 20\).

Cỏ mẫu \(n = 17 + 10 + 9 + 6 = 42\).

Gọi \({{\rm{y}}_1};{{\rm{y}}_2}; \ldots ;{{\rm{y}}_{42}}\) là chiều cao của 42 học sinh lớp \(12\;{\rm{B}}\) và được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({y_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{42}}{4} - 0}}{{17}} \cdot (160 - 155) \approx 158,1\).

Tứ phân vị thứ ba của mẫu số liệu là \({{\rm{y}}_{32}}\) thuộc nhóm [165;170) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_2} = 165 + \frac{{\frac{{423}}{4} - 27}}{9} \cdot (170 - 165) = 167,5\).

Khoảng tứ phân vị là: \({R_{2Q}} = 167,5 - 158,1 = 9,4\).

b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này, ta nên dùng khoảng tứ phân vị vì khoảng tứ phân vị chỉ phụ thuộc vào nửa giửa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.

Lời giải

Cỡ mẫu \(n = 25\)

Gọi \({x_1};{x_2}; \ldots ;{x_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp \(12{\rm{C}}\) được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2} \in [155;160);{x_3}; \ldots ;{x_9} \in [160;165);{x_{10}}; \ldots ;{x_{21}} \in [165;170);{x_{22}}; \ldots ;{x_{24}} \in [170;175)\); \({x_{25}} \in [180;185)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_6} + {x_7}} \right) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 160 + \frac{{\frac{{25}}{4} - 2}}{7}(165 - 160) = \frac{{4565}}{{28}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 165 + \frac{{\frac{{3.25}}{4} - (2 + 7)}}{{12}}(170 - 165) = \frac{{2705}}{{16}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{675}}{{12}}\)

Gọi \({y_1};{y_2}; \ldots ;{y_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp \(12{\rm{D}}\) được xếp theo thứ tự không giảm.

та có: \({y_1};{y_2}; \ldots ;{y_5} \in [155;160);{y_6}; \ldots ;{y_{14}} \in [160;165);{y_{15}}; \ldots ;{y_{22}} \in [165;170)\);

\({y_{23}};{{\rm{y}}_{24}} \in [170;175);{y_{25}} \in [175;180)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_6} + {y_7}} \right) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \(Q_1^\prime  = 160 + \frac{{\frac{{25}}{4} - 5}}{9}(165 - 160) = \frac{{5785}}{{36}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 165 + \frac{{\frac{{3.25}}{4} - (5 + 9)}}{8}(170 - 165) = \frac{{5375}}{{32}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime  = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{2095}}{{288}}\)

Có \({\Delta _Q}^\prime  > {\Delta _Q}\) nên chiều cao của các bạn học sinh nữ lớp \(12{\rm{D}}\) có độ phân tán lơn hơn lớp \(12{\rm{C}}\)