Câu hỏi:

19/08/2025 535 Lưu

Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

Chiều cao (m)

[8,4; 8,6)

[8,6; 8,8)

[8,8; 9,0)

[9,0; 9,2)

[9,2; 9,4)

Số cây

5

12

25

44

14

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khoảng biên thiên của mẫu số liệu ghép nhóm: \(9,4 - 8,4 = 1(\;{\rm{m}})\)

Cỡ mẫu \(n = 100\);

Gọi \({x_1};{x_2}; \ldots ;{x_{100}}\) là mẫu số liệu gốc về số lượt khách hàng đặt bàn qua hình thức trực tuyến mối ngày trong quý III năm 2022 của nhà hàng được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{x_5} \in [8,4;8,6);{x_6}; \ldots ;{x_{17}} \in [8,6;8,8);{x_{18}}; \ldots ;{x_{42}} \in [8,8;9,0);{x_{43}}; \ldots ;{x_{86}} \in [9,0;9,2)\); \({x_{87}}; \ldots ;{x_{100}} \in [9,2;9,4)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right) \in [8,8;9,0)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 8,8 + \frac{{\frac{{100}}{4} - (5 + 12)}}{{25}}(9,0 - 8,8) = 9,44\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in [9,0;9,2)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 9,0 + \frac{{\frac{{3.100}}{4} - (5 + 12 + 25)}}{{44}}(9,2 - 9,0) = 10,5\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 1,06\)

b) Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \(x > {Q_3} + 1,5{\Delta _Q}\) hoặc \(x < {Q_1} - 1,5{\Delta _Q}\) Hay \(x > 10,5 + 1,5.1,06 = 12,09\) hoặc \(x < 9,44 - 1,5.1,06 = 7,85\)

Vậy cây cao \(8,4\;{\rm{m}}\) không phải là giá trị ngoại lệ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cỡ mẫu \(n = 25\)

Gọi \({x_1};{x_2}; \ldots ;{x_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp \(12{\rm{C}}\) được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2} \in [155;160);{x_3}; \ldots ;{x_9} \in [160;165);{x_{10}}; \ldots ;{x_{21}} \in [165;170);{x_{22}}; \ldots ;{x_{24}} \in [170;175)\); \({x_{25}} \in [180;185)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_6} + {x_7}} \right) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 160 + \frac{{\frac{{25}}{4} - 2}}{7}(165 - 160) = \frac{{4565}}{{28}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 165 + \frac{{\frac{{3.25}}{4} - (2 + 7)}}{{12}}(170 - 165) = \frac{{2705}}{{16}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{675}}{{12}}\)

Gọi \({y_1};{y_2}; \ldots ;{y_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp \(12{\rm{D}}\) được xếp theo thứ tự không giảm.

та có: \({y_1};{y_2}; \ldots ;{y_5} \in [155;160);{y_6}; \ldots ;{y_{14}} \in [160;165);{y_{15}}; \ldots ;{y_{22}} \in [165;170)\);

\({y_{23}};{{\rm{y}}_{24}} \in [170;175);{y_{25}} \in [175;180)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_6} + {y_7}} \right) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \(Q_1^\prime  = 160 + \frac{{\frac{{25}}{4} - 5}}{9}(165 - 160) = \frac{{5785}}{{36}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 165 + \frac{{\frac{{3.25}}{4} - (5 + 9)}}{8}(170 - 165) = \frac{{5375}}{{32}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime  = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{2095}}{{288}}\)

Có \({\Delta _Q}^\prime  > {\Delta _Q}\) nên chiều cao của các bạn học sinh nữ lớp \(12{\rm{D}}\) có độ phân tán lơn hơn lớp \(12{\rm{C}}\)

Lời giải

Lớp 12A

Khoảng biến thiên: \({{\rm{R}}_1} = 175 - 145 = 30\).

Cơ mẫu \({\rm{n}} = 1 + 0 + 15 + 12 + 10 + 5 = 43\).

Gọi \({{\rm{x}}_1};{{\rm{x}}_2}; \ldots ;{{\rm{x}}_{43}}\) là chiều cao của 43 học sinh lớp \(12\;{\rm{A}}\) được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({{\rm{x}}_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{43}}{4} - 1}}{{15}} \cdot (160 - 155) = 158,25\).

Tứ phân vị thứ ba của mẫu số liệu là x33 thuộc nhóm \([165;170)\) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_3} = 165 + \frac{{\frac{{43,3}}{4} - 28}}{{10}} \cdot (170 - 165) = 167,125\).

Khoảng tứ phân vị là \({{\rm{D}}_{{\rm{1Q}}}} = 167,125 - 158,25 = 8,875\).

Lớp 12B

Khoảng biến thiên: \({R_2} = 175 - 155 = 20\).

Cỏ mẫu \(n = 17 + 10 + 9 + 6 = 42\).

Gọi \({{\rm{y}}_1};{{\rm{y}}_2}; \ldots ;{{\rm{y}}_{42}}\) là chiều cao của 42 học sinh lớp \(12\;{\rm{B}}\) và được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \({y_{11}}\) thuộc nhóm \([155;160)\) nên nhóm chứa tứ phân vị thứ nhất là \([155;160)\).

Ta có \({Q_1} = 155 + \frac{{\frac{{42}}{4} - 0}}{{17}} \cdot (160 - 155) \approx 158,1\).

Tứ phân vị thứ ba của mẫu số liệu là \({{\rm{y}}_{32}}\) thuộc nhóm [165;170) nên nhóm chứa tứ phân vị thứ ba là \([165;170)\).

Ta có \({Q_2} = 165 + \frac{{\frac{{423}}{4} - 27}}{9} \cdot (170 - 165) = 167,5\).

Khoảng tứ phân vị là: \({R_{2Q}} = 167,5 - 158,1 = 9,4\).

b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này, ta nên dùng khoảng tứ phân vị vì khoảng tứ phân vị chỉ phụ thuộc vào nửa giửa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.