Câu hỏi:

14/08/2025 22 Lưu

Từ định nghĩa xác suất có điều kiện và định nghĩa về tính độc lập của hai biến cố, hãy chứng tỏ rằng nếu \(A\) và \(B\) là hai biến cố độc lập thì \(P(A\mid B) = P(A)\) và \(P(B\mid A) = P(B)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo định nghĩa, \(P(A\mid B)\) là xác suất của \(A\), tính trong điều kiện biết rằng biến cố \(B\) đã xảy ra. Vì \(A\), \(B\) độc lập nên việc xảy ra \(B\) không ảnh hưởng tới xác suất xuất hiện của \(A\). Do đó:

\(P(A\mid B) = P(A){\rm{. }}\)

Tương tự \(P(B\mid A)\) là xác suất của \(B\), tính trong điều kiện biết rằng biến cố \(A\) đã xảy ra. Vì \(A\), \(B\) độc lập nên việc xảy ra \(A\) không ảnh hưởng tới xác suất xuất hiện của \(B\). Do đó:

\(P(B\mid A) = P(B){\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Bằng định nghĩa

Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).

Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).

Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.

Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).

Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).

Lời giải

Gọi:

- A là biến cố "Chọn được học sinh thích kem";

- \(B\) là biến cố "Chọn được học sinh thích trà sữa".

Khi đó xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa chính là xác suất của \(A\) với điều kiện \(B\).

Vì có \(68\% \) số học sinh thích trà sữa trong nhóm khảo sát nên \(P(B) = 68\%  = 0,68\).

Ta có AB là biến cố "Chọn được học sinh thích cả trà sửa và kem".

Vì có \(24\% \) số học sinh thích cả trà sữa và kem nên \(P(AB) = 24\%  = 0,24\).

Vì thế ta có: \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,24}}{{0,68}} \approx 0,35\).

Vậy xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa là 0,35 .