Câu hỏi:

14/08/2025 79 Lưu

Trong cuộc khảo sát trên một nhóm học sinh gồm các bạn thích trà sữa hoặc kem, người ta có được kết quả sau: Có \(56\% \) số học sinh thích kem, \(68\% \) số học sinh thích trà sữa, \(24\% \) số học sinh thích cả trà sửa và kem (Hình 6.2). Chọn ngẫu nhiên một bạn học sinh trong nhóm được khảo sát này. Tính xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa.

 

Trong cuộc khảo sát trên một nhóm học sinh gồm các bạn thích trà sữa hoặc kem, người ta có được kết quả sau: Có \(56\% \) số học sinh thích kem, \(68\% \) số học sinh thích trà sữa, \(24\% \) số học sinh thích cả trà sửa và kem (Hình 6.2). Chọn ngẫu nhiên một bạn học sinh trong nhóm được khảo sát này. Tính xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi:

- A là biến cố "Chọn được học sinh thích kem";

- \(B\) là biến cố "Chọn được học sinh thích trà sữa".

Khi đó xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa chính là xác suất của \(A\) với điều kiện \(B\).

Vì có \(68\% \) số học sinh thích trà sữa trong nhóm khảo sát nên \(P(B) = 68\%  = 0,68\).

Ta có AB là biến cố "Chọn được học sinh thích cả trà sửa và kem".

Vì có \(24\% \) số học sinh thích cả trà sữa và kem nên \(P(AB) = 24\%  = 0,24\).

Vì thế ta có: \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,24}}{{0,68}} \approx 0,35\).

Vậy xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa là 0,35 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Bằng định nghĩa

Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).

Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).

Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.

Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).

Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).

Lời giải

Xét các biến cố:

A: "Lần thứ nhất lấy ra sản phẩm chất lượng thấp";

\(B\) : "Lần thứ hai lấy ra sản phẩm chất lượng thấp";

\(C\) : "Cả hai lần đều lấy ra sản phẩm chất lượng thấp".

Khi đó, xác suất để lần thứ hai lấy ra sản phầm chất lượng thấp, biết lần thứ nhất lấy ra sản phẩm chất lượng thấp, là xác suất có điều kiện \({\rm{P}}(B\mid A)\) và \({\rm{P}}(C) = {\rm{P}}(B \cap A)\).

Ta có: \({\rm{P}}(A) = \frac{8}{{25}};{\rm{P}}(B\mid A) = \frac{7}{{24}}\). Suy ra \({\rm{P}}(C) = {\rm{P}}(B \cap A) = {\rm{P}}(A) \cdot {\rm{P}}(B\mid A) = \frac{8}{{25}} \cdot \frac{7}{{24}} = \frac{7}{{75}}\).

Vậy xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là \(\frac{7}{{75}}\).