Câu hỏi:

14/08/2025 89 Lưu

Một công ty vừa ra mắt sản phẩm \(X\) và tổ chức ngày trải nghiệm sản phẩm. Họ thống kê được trong 200 người đến tham quan ngày trải nghiệm có 60 người là nam giới và 140 người là nữ giới. Trong số những người được thống kê này, có 120 người mua sản phẩm X , gồm 40 khách hàng nam và 80 khách hàng nữ, còn lại là không mua sản phẩm X. Chọn ngẫu nhiên một người trong số 200 người được thống kê. Tính xác suất để người này mua sản phẩm \(X\), biết rằng người được chọn là nữ giới (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi:

- A là biến cố "Người được chọn mua sản phẩm X";

- \(B\) là biến cố "Người được chọn là nữ giới".

Khi đó xác suất để chọn được người mua sản phẩm \(X\), biết rằng người này là nữ giới chính là xác suất của \(A\) với điều kiện \(B\).

Vì có 80 người mua sản phẩm \(X\) là nữ giới nên \(P(AB) = \frac{{80}}{{200}} = 0,4\).

Vì có 140 người là nữ giới trong số lượng thống kê nên \(P(B) = \frac{{140}}{{200}} = 0,7\).

Ta có xác suất cần tìm là: \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,4}}{{0,7}} \approx 0,57\).

Vậy xác suất để người được chọn có mua sản phẩm \(X\), biết rằng người này là nữ giới là 0,57 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Bằng định nghĩa

Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).

Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).

Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.

Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).

Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).

Lời giải

Gọi:

- A là biến cố "Chọn được học sinh thích kem";

- \(B\) là biến cố "Chọn được học sinh thích trà sữa".

Khi đó xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa chính là xác suất của \(A\) với điều kiện \(B\).

Vì có \(68\% \) số học sinh thích trà sữa trong nhóm khảo sát nên \(P(B) = 68\%  = 0,68\).

Ta có AB là biến cố "Chọn được học sinh thích cả trà sửa và kem".

Vì có \(24\% \) số học sinh thích cả trà sữa và kem nên \(P(AB) = 24\%  = 0,24\).

Vì thế ta có: \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,24}}{{0,68}} \approx 0,35\).

Vậy xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa là 0,35 .