Câu hỏi:

19/08/2025 25 Lưu

Cho \(\Delta ABC\) có trực tâm \(H\) và \(O\) là tâm đường tròn ngoại tiếp tam giác. Gọi \(B'\) là điểm đối xứng của \(B\) qua \(O\).

a) \(B'C \bot BC\).

b) \(B'C{\rm{//}}AB\).

c) Tứ giác \(AB'CH\) là hình bình hành.

d) \(\overrightarrow {AH}  = \overrightarrow {B'C} ;\,\,\overrightarrow {AB'}  = \overrightarrow {HC} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c (ảnh 1)

a) Đúng. Ta có \(BB'\) là đường kính đường tròn ngoại tiếp tam giác \(ABC\) nên \(\widehat {BCB'} = 90^\circ \) \( \Rightarrow B'C \bot BC\).

b) Sai. Ta có \(AH \bot BC\), suy ra \(B'C{\rm{//}}AH\) (1). Mà \(A,B,\,H\) không thẳng hàng nên \[B'C\]  không song song với \(AB\).

c) Đúng. Tương tự: \(\widehat {BAB'} = 90^\circ \) hay \(AB' \bot AB\) mà \(CH \bot AB\) nên \(CH\,{\rm{//}}\,AB'\,\,(2)\).

Từ (1) và (2) suy ra tứ giác \(AB'CH\) là hình bình hành.

d) Đúng. Vì tứ giác \(AB'CH\) là hình bình hành nên \(\overrightarrow {AH}  = \overrightarrow {B'C} ;\,\,\overrightarrow {AB'}  = \overrightarrow {HC} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\vec u\) khác vectơ không và cùng hướng với vectơ \(\overrightarrow {BD} \) nên \(\vec u\) là một trong hai vectơ \(\overrightarrow {BO} ,\overrightarrow {OD} \).

Áp dụng định lí Pythagore cho tam giác \(ABD\): \(B{D^2} = A{B^2} + A{D^2} = 3 + 1 = 4 \Rightarrow BD = 2\).

Vì vậy \(\left| {\vec u} \right| = \left| {\overrightarrow {BO} } \right| = \left| {\overrightarrow {OD} } \right| = \frac{{BD}}{2} = 1\).

Đáp án: 1.

Lời giải

c (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), ta có:

\(AG = \frac{2}{3}AM = \frac{2}{3}\sqrt {A{B^2} - B{M^2}}  = \frac{2}{3}\sqrt {{a^2} - \frac{{{a^2}}}{4}}  = \frac{{a\sqrt 3 }}{3}\).

Suy ra \(MI = AG = \frac{{a\sqrt 3 }}{3}\).

Khi đó, \(\left| {\overrightarrow {BI} } \right| = BI = \sqrt {B{M^2} + M{I^2}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{3}}  = \frac{{a\sqrt {21} }}{6}\).

Vậy \(m = 21\).

Đáp án: 21.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP