Câu hỏi:

04/08/2025 33 Lưu

Cho \(\Delta ABC,E\) là trung điểm BC, I là trung điểm của AB. Gọi D, I, J, K lần lượt là các điểm thỏa mãn \(\overrightarrow {BE} = 2\overrightarrow {BD} ,\overrightarrow {AJ} = \frac{1}{2}\overrightarrow {JC} ,\overrightarrow {IK} = m\overrightarrow {IJ} \). Tìm m để A, K, D thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có A, K, D thẳng hàng \( \Leftrightarrow \overrightarrow {AD}  = n\overrightarrow {AK}  = n\left( {\overrightarrow {AI}  + \overrightarrow {IK} } \right)\) (1)

Ta có \(\overrightarrow {BE}  = 2\overrightarrow {BD}  = 2\left( {\overrightarrow {BA}  + \overrightarrow {AD} } \right) = 2\overrightarrow {BA}  + 2\overrightarrow {AD} \).

Suy ra \(2\overrightarrow {AD}  = \overrightarrow {BE}  - 2\overrightarrow {BA}  = \overrightarrow {BA}  + \overrightarrow {AE}  - 2\overrightarrow {BA}  = \overrightarrow {AB}  + \overrightarrow {AE} \)

        \( = \overrightarrow {AB}  + \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{3}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \)

        \( = 3\overrightarrow {AI}  + \frac{3}{2}\overrightarrow {AJ}  = 3\overrightarrow {AI}  + \frac{3}{2}\left( {\overrightarrow {AI}  + \overrightarrow {IJ} } \right) = \frac{9}{2}\overrightarrow {AI}  + \frac{3}{2}\overrightarrow {IJ} \).

Mà \(\overrightarrow {IK}  = m\overrightarrow {IJ} \) nên \(2\overrightarrow {AD}  = \frac{9}{2}\overrightarrow {AI}  + \frac{3}{{2m}}\overrightarrow {IK}  \Rightarrow \overrightarrow {AD}  = \frac{9}{4}\overrightarrow {AI}  + \frac{3}{{4m}}\overrightarrow {IK} \) (2)

Từ (1) và (2) \( \Rightarrow \frac{9}{4} = \frac{3}{{4m}} \Leftrightarrow m = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(3\overrightarrow {IA}  + 2\overrightarrow {IC}  - 2\overrightarrow {ID}  = \vec 0 \Leftrightarrow 3\overrightarrow {IA}  + 2\left( {\overrightarrow {IC}  - \overrightarrow {ID} } \right) = \vec 0\)

\( \Leftrightarrow 3\overrightarrow {IA}  + 2\overrightarrow {DC}  = \vec 0 \Leftrightarrow  - 3\overrightarrow {AI}  + 2\overrightarrow {AB}  = \vec 0 \Leftrightarrow \overrightarrow {AI}  = \frac{2}{3}\overrightarrow {AB} \).

\(\overrightarrow {JA}  - 2\overrightarrow {JB}  + 2\overrightarrow {JC}  = \vec 0 \Leftrightarrow \overrightarrow {AJ}  - 2\left( {\overrightarrow {JC}  - \overrightarrow {JB} } \right) = \vec 0 \Leftrightarrow \overrightarrow {AJ}  = 2\overrightarrow {BC}  \Leftrightarrow \overrightarrow {AJ}  = 2\overrightarrow {AD} \).

\(\overrightarrow {IO}  = \overrightarrow {AO}  - \overrightarrow {AI}  = \frac{1}{2}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \frac{2}{3}\overrightarrow {AB}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

\(\overrightarrow {IJ}  = \overrightarrow {AJ}  - \overrightarrow {AI}  = 2\overrightarrow {AD}  - \frac{2}{3}\overrightarrow {AB}  =  - \frac{2}{3}\overrightarrow {AB}  + 2\overrightarrow {AD} \).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}\overrightarrow {IO}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \\\overrightarrow {IJ}  =  - \frac{2}{3}\overrightarrow {AB}  + 2\overrightarrow {AD} \end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}6\overrightarrow {IO}  =  - \overrightarrow {AB}  + 3\overrightarrow {AD} \\\frac{3}{2}\overrightarrow {IJ}  =  - \overrightarrow {AB}  + 3\overrightarrow {AD} \end{array}\end{array} \Rightarrow 6\overrightarrow {IO}  = \frac{3}{2}\overrightarrow {IJ}  \Leftrightarrow \overrightarrow {IJ}  = 4\overrightarrow {IO} } \right.} \right.\).

Đáp án: 4.

Lời giải

c (ảnh 2)

Ta có \(\overrightarrow {{F_2}}  =  - 2{\vec F_1}\).

Để vật trở về trạng thái cân bằng thì hợp lực bằng \(\vec 0\)

\( \Leftrightarrow {\vec F_1} + {\vec F_2} + {\vec F_3} + {\vec F_4} = \vec 0 \Leftrightarrow {\vec F_1} - 2{\vec F_1} + {\vec F_3} + {\vec F_4} = \vec 0 \Leftrightarrow \overrightarrow {{F_3}}  + {\vec F_4} = {\vec F_1}\).

Đặt \({\vec F_1} = \overrightarrow {OA} ,\overrightarrow {{F_2}}  = \overrightarrow {OB} ,{\vec F_3} = \overrightarrow {OC} ,\overrightarrow {{F_4}}  = \overrightarrow {OD} \).

Ta có \({\vec F_3} + {\vec F_4} = {\vec F_1} \Leftrightarrow \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow {OA} \). Do đó \(OCAD\) là hình bình hành.

Mặt khác \(OC = OD = 20\) và \(\widehat {COD} = 45^\circ  + 45^\circ  = 90^\circ \) nên \(OCAD\) là hình vuông.

Khi đó \(\left| {{{\vec F}_1}} \right| = OA = 20\sqrt 2 \;{\rm{N}},\left| {\overrightarrow {{F_2}} } \right| = 2\left| {{{\vec F}_1}} \right| = 40\sqrt 2 \;{\rm{N}} \approx {\rm{56,6}}\,\,{\rm{N}}\).

Đáp án: 56,6.