Câu hỏi:

04/08/2025 15 Lưu

Cho hình bình hành \(ABCD\) và các điểm \(M,N,P\) thoả mãn \(\overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB} \), \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AC} ,\) \(\overrightarrow {AP}  = \frac{1}{4}\overrightarrow {AD} \).

a) \(\overrightarrow {AN}  = \frac{1}{6}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\).

b) \(\overrightarrow {MN}  = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AD} .\)

c) \(\overrightarrow {MP}  = \frac{1}{3}\overrightarrow {AD}  - \frac{1}{2}\overrightarrow {AB} \).

d) Ba điểm \(M,N,P\) thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c (ảnh 1)

a) Đúng. Ta có \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AC}  = \frac{1}{6}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\).

b) Sai. Ta có \(\overrightarrow {MN}  = \overrightarrow {AN}  - \overrightarrow {AM}  = \frac{1}{6}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \frac{1}{2}\overrightarrow {AB}  = \frac{{ - 1}}{3}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AD} .\)

c) Sai. Ta có \(\overrightarrow {MP}  = \overrightarrow {AP}  - \overrightarrow {AM}  = \frac{1}{4}\overrightarrow {AD}  - \frac{1}{2}\overrightarrow {AB} \).

d) Đúng. Ta có \(\overrightarrow {MN}  = \frac{1}{6}\left( {\overrightarrow {AD}  - 2\overrightarrow {AB} } \right) = \frac{1}{6} \cdot 4 \cdot \frac{1}{4}\left( {\overrightarrow {AD}  - 2\overrightarrow {AB} } \right) = \frac{2}{3}\overrightarrow {MP} \).

Suy ra \(\overrightarrow {MN} ,\overrightarrow {MP} \) cùng phương. Vậy ba điểm \(M,N,P\) thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Do \(M\) là trung điểm của \(AB\) nên ta có \(\overrightarrow {MA}  + \overrightarrow {MB}  = \vec 0\).

b) Đúng. Do \(N\) là trung điểm của \(CD\) nên ta có \(\overrightarrow {NC}  + \overrightarrow {ND}  = \vec 0\).

c) Sai. Theo quy tắc cộng, ta có \(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN} \). (1)

d) Đúng. Ta lại có \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BD}  + \overrightarrow {DN} \). (2)

Cộng hai đẳng thức (1), (2) vế theo vế, ta được

\(2\overrightarrow {MN}  = \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AC}  + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CN}  + \overrightarrow {DN} } \right)\).

Kết hợp với kết quả ở ý a) và b), ta suy ra được \(2\overrightarrow {MN}  = \overrightarrow {AC}  + \overrightarrow {BD} \).

Lời giải

c (ảnh 1)

a) Đúng. Xét tam giác \(ABD\) nội tiếp đường tròn đường kính \(AD\) nên \(AB \bot BD\); mặt khác \(AB \bot CH\) nên \(BD{\rm{//}}CH\) (1).

b) Đúng. Tương tự, tam giác \(ACD\) nội tiếp đường tròn đường kính \(AD\) nên \(AC \bot CD\); mặt khác \(AC \bot BH\) nên \(CD{\rm{//}}BH\) (2).

c) Sai. Từ (1) và (2) suy ra \(BDCH\) là hình bình hành.

Khi đó, \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = \overrightarrow {HA}  + \overrightarrow {HD}  = 2\overrightarrow {HO} \) (vì \(O\) là trung điểm \(AD\)).

d) Sai. Ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {OH}  + \overrightarrow {HB}  + \overrightarrow {OH}  + \overrightarrow {HC} \)      

 \( = 3\overrightarrow {OH}  + \left( {\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC} } \right) = 3\overrightarrow {OH}  + 2\overrightarrow {HO}  = \overrightarrow {OH} {\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP