Cho hai mă̆t phẳng \(\left( {{P_1}} \right):x + 2y - 3z + 5 = 0\) và \(\left( {{P_2}} \right): - 4x - 8y + 12z + 3 = 0\).
a) Chứng minh rằng \(\left( {{P_1}} \right)//\left( {{P_2}} \right)\).
b) Tính khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
Cho hai mă̆t phẳng \(\left( {{P_1}} \right):x + 2y - 3z + 5 = 0\) và \(\left( {{P_2}} \right): - 4x - 8y + 12z + 3 = 0\).
a) Chứng minh rằng \(\left( {{P_1}} \right)//\left( {{P_2}} \right)\).
b) Tính khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
Quảng cáo
Trả lời:
a) Ta có \({\vec n_1} = (1;2; - 3),{\vec n_2} = ( - 4; - 8;12)\) lần lượt là vectơ pháp tuyến của các mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\). Do \({\vec n_2} = - 4{\vec n_1},3 \ne ( - 4)\). 5 nên \(\left( {{P_1}} \right)//\left( {{P_2}} \right)\).
b) Chọn điểm \({M_0}\left( {\frac{3}{4};0;0} \right) \in \left( {{P_2}} \right)\). Suy ra khoảng cách từ điểm \({M_0}\) đến mặt phẳng \(\left( {{P_1}} \right)\) bằng:
\(d\left( {{M_0},\left( {{P_1}} \right)} \right) = \frac{{\left| {\frac{3}{4} + 5} \right|}}{{\sqrt {{1^2} + {2^2} + {{( - 3)}^2}} }} = \frac{{23\sqrt {14} }}{{56}}.\)
Vậy khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\) bằng \(\frac{{23\sqrt {14} }}{{56}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mặt phẳng \((ABC)\) đi qua ba điểm \(A(1;1;1),B(2;3;4),C(5;2;3)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB} = (1;2;3),\overrightarrow {AC} = (4;1;2)\), suy ra \((ABC)\) có vectơ pháp tuyến \(\vec n = (2.2 - 3.1;3.4 - 1.2;1.1 - 2.4) = (1;10; - 7)\).
Phương trình của \((ABC)\) là: \(1(x - 1) + 10(y - 1) - 7(z - 1) = 0\) hay \(x + 10y - 7z - 4 = 0\).
Chiều cao SH cùa hình chóp S.ABC chính là khoàng cách từ điểm \(S\) đến \((ABC)\).
Ta có: \(SH = d(S,(ABC)) = \frac{{|1.5 + 10 \cdot 0 + ( - 7) \cdot 1 - 4|}}{{\sqrt {{1^2} + {{10}^2} + {{( - 7)}^2}} }} = \frac{6}{{5\sqrt 6 }} = \frac{{\sqrt 6 }}{5}\).
Lời giải
Ta có \(\overrightarrow {{n_P}} = (1;3; - 1),\overrightarrow {{n_Q}} = (1; - 1; - 2)\) vì \(\overrightarrow {{n_P}} \cdot \overrightarrow {{n_Q}} = 1 \cdot 1 + 3 \cdot ( - 1) + ( - 1) \cdot ( - 2) = 0\)
Do đó hai mặt phẳng \(({\rm{P}})\) và \(({\rm{Q}})\) vuông góc với nhau.
\(\begin{array}{l}{\rm{ b) Do M}} \in {\rm{Ox nên M}} ({\rm{a}};0;0){\rm{. Do d}}({\rm{M}},({\rm{P}})) = {\rm{d}}({\rm{M}},({\rm{Q}})) {\rm{ nên }} \frac{{|a|}}{{\sqrt {1 + 9 + 1} }} = \frac{{|a + 1|}}{{\sqrt {1 + 1 + 4} }} \Leftrightarrow \sqrt 6 |a| = \sqrt {11} |a + 1|\\ \Leftrightarrow 6{a^2} = 11{a^2} + 22a + 11 \Leftrightarrow 5{a^2} + 22a + 11 = 0 \Leftrightarrow a = \frac{{ - 11 - \sqrt {66} }}{5}{\rm{ hay }}a = \frac{{ - 11 + \sqrt {66} }}{5}\end{array}\)Vậy có hai điểm \(M\) thỏa mãn yêu cầu là: \({M_1}\left( {\frac{{ - 11 - \sqrt {66} }}{5};0;0} \right),{M_2}\left( {\frac{{ - 11 + \sqrt {66} }}{5};0;0} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.