Câu hỏi:

04/08/2025 9 Lưu

Trong không gian Oxyz, cho hai mặt phẳng \((P):x + 3y + z + 2 = 0\) và \((Q):x + 3y + z + 5 = 0\).

a) Chứng minh rằng \((P)\) và \((Q)\) song song với nhau.

b) Lấy một điểm thuộc \((P)\), tính khoảng cách từ điểm đó đến \((Q)\). Từ đó tính khoảng cách giữa hai mặt phẳng \((P)\) và \((Q)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \(\overrightarrow {{n_P}}  = (1;3;1),\overrightarrow {{n_Q}}  = (1;3;1)\). Vì \(\overrightarrow {{n_P}}  = \overrightarrow {{n_Q}} \) và \(2 \ne 5\). Do đó \(({\rm{P}})\) và \(({\rm{Q}})\) song song với nhau.

b) Lấy điểm \({\rm{M}}(0;0; - 2) \in ({\rm{P}})\).

Khi đó khoảng cách từ \(M\) đến mặt phẳng \((Q)\) là: \(d(M,(Q)) = \frac{{| - 2 + 5|}}{{\sqrt {1 + {3^2} + 1} }} = \frac{3}{{\sqrt {11} }}\)

Do đó \(d(M,(Q)) = d((P),(Q)) = \frac{3}{{\sqrt {11} }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mặt phẳng \((ABC)\) đi qua ba điểm \(A(1;1;1),B(2;3;4),C(5;2;3)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB}  = (1;2;3),\overrightarrow {AC}  = (4;1;2)\), suy ra \((ABC)\) có vectơ pháp tuyến \(\vec n = (2.2 - 3.1;3.4 - 1.2;1.1 - 2.4) = (1;10; - 7)\).

Phương trình của \((ABC)\) là: \(1(x - 1) + 10(y - 1) - 7(z - 1) = 0\) hay \(x + 10y - 7z - 4 = 0\).

Chiều cao SH cùa hình chóp S.ABC chính là khoàng cách từ điểm \(S\) đến \((ABC)\).

Ta có: \(SH = d(S,(ABC)) = \frac{{|1.5 + 10 \cdot 0 + ( - 7) \cdot 1 - 4|}}{{\sqrt {{1^2} + {{10}^2} + {{( - 7)}^2}} }} = \frac{6}{{5\sqrt 6 }} = \frac{{\sqrt 6 }}{5}\).

Lời giải

Dựa vào hệ trục toạ độ như hình vẽ, ta có \(O(0;0;0),S(0;0;2a)\), \(A( - a;0;0),B(0;a;0)\) và \(C(a;0;0)\).

Khi đó \((SAB)\) có phương trình là \(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z}{{2a}} = 1\) hay \( - 2x + 2y + z - 2a = 0\).

Vậy \(d(C,(SAB)) = \frac{{| - 2 \cdot a - 2a|}}{{\sqrt {{{( - 2)}^2} + {2^2} + {1^2}} }} = \frac{{4a}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP