Trong không gian Oxyz, cho hai mặt phẳng (P): \(x + 3y - z = 0,(Q):x - y - 2z + 1 = 0\).
a) Chứng minh rằng hai mặt phẳng \(({\rm{P}})\) và \(({\rm{Q}})\) vuông góc với nhau.
b) Tim điểm M thuộc trục Ox và cách đều hai mặt phẳng \(({\rm{P}})\) và \(({\rm{Q}})\).
Trong không gian Oxyz, cho hai mặt phẳng (P): \(x + 3y - z = 0,(Q):x - y - 2z + 1 = 0\).
a) Chứng minh rằng hai mặt phẳng \(({\rm{P}})\) và \(({\rm{Q}})\) vuông góc với nhau.
b) Tim điểm M thuộc trục Ox và cách đều hai mặt phẳng \(({\rm{P}})\) và \(({\rm{Q}})\).
Quảng cáo
Trả lời:

Ta có \(\overrightarrow {{n_P}} = (1;3; - 1),\overrightarrow {{n_Q}} = (1; - 1; - 2)\) vì \(\overrightarrow {{n_P}} \cdot \overrightarrow {{n_Q}} = 1 \cdot 1 + 3 \cdot ( - 1) + ( - 1) \cdot ( - 2) = 0\)
Do đó hai mặt phẳng \(({\rm{P}})\) và \(({\rm{Q}})\) vuông góc với nhau.
\(\begin{array}{l}{\rm{ b) Do M}} \in {\rm{Ox nên M}} ({\rm{a}};0;0){\rm{. Do d}}({\rm{M}},({\rm{P}})) = {\rm{d}}({\rm{M}},({\rm{Q}})) {\rm{ nên }} \frac{{|a|}}{{\sqrt {1 + 9 + 1} }} = \frac{{|a + 1|}}{{\sqrt {1 + 1 + 4} }} \Leftrightarrow \sqrt 6 |a| = \sqrt {11} |a + 1|\\ \Leftrightarrow 6{a^2} = 11{a^2} + 22a + 11 \Leftrightarrow 5{a^2} + 22a + 11 = 0 \Leftrightarrow a = \frac{{ - 11 - \sqrt {66} }}{5}{\rm{ hay }}a = \frac{{ - 11 + \sqrt {66} }}{5}\end{array}\)Vậy có hai điểm \(M\) thỏa mãn yêu cầu là: \({M_1}\left( {\frac{{ - 11 - \sqrt {66} }}{5};0;0} \right),{M_2}\left( {\frac{{ - 11 + \sqrt {66} }}{5};0;0} \right)\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mặt phẳng \((ABC)\) đi qua ba điểm \(A(1;1;1),B(2;3;4),C(5;2;3)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB} = (1;2;3),\overrightarrow {AC} = (4;1;2)\), suy ra \((ABC)\) có vectơ pháp tuyến \(\vec n = (2.2 - 3.1;3.4 - 1.2;1.1 - 2.4) = (1;10; - 7)\).
Phương trình của \((ABC)\) là: \(1(x - 1) + 10(y - 1) - 7(z - 1) = 0\) hay \(x + 10y - 7z - 4 = 0\).
Chiều cao SH cùa hình chóp S.ABC chính là khoàng cách từ điểm \(S\) đến \((ABC)\).
Ta có: \(SH = d(S,(ABC)) = \frac{{|1.5 + 10 \cdot 0 + ( - 7) \cdot 1 - 4|}}{{\sqrt {{1^2} + {{10}^2} + {{( - 7)}^2}} }} = \frac{6}{{5\sqrt 6 }} = \frac{{\sqrt 6 }}{5}\).
Lời giải
Theo Hình 19 , ta có \(A(0;0;0),S(0;0;3a),B(2a;0;0),D(0;5a;0)\) và \(C(2a;5a;0)\).
Ta có \(\overrightarrow {SB} = (2a;0; - 3a),\overrightarrow {SC} = (2a;5a; - 3a)\), suy ra \([\overrightarrow {SB} ,\overrightarrow {SC} ] = \left( {15{a^2};0;10{a^2}} \right)\).
Mặt phẳng \((SBC)\) có vectơ pháp tuyến là \(\vec n = (3;0;2)\).
Vậy mặt phẳng \((SBC)\) có phương trình là: \(3(x - 0) + 2(z - 3a) = 0 \Leftrightarrow 3x + 2z - 6a = 0.\)
Khi đó \(d(A,(SBC)) = \frac{{| - 6a|}}{{\sqrt {{3^2} + {2^2}} }} = \frac{6}{{\sqrt {13} }}a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.