Cho tứ giác \(ABCD\). Gọi \(I,J\) theo thứ tự là trung điểm của \(AB,CD\) và \(IJ = \frac{5}{4}\). Gọi \(M,N\) theo thứ tự là trung điểm của \(BC,AC\). Tính \(\left| {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right|\).
Cho tứ giác \(ABCD\). Gọi \(I,J\) theo thứ tự là trung điểm của \(AB,CD\) và \(IJ = \frac{5}{4}\). Gọi \(M,N\) theo thứ tự là trung điểm của \(BC,AC\). Tính \(\left| {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right|\).
Quảng cáo
Trả lời:
Ta có \(2\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AC} \) (1), \(2\overrightarrow {BN} = \overrightarrow {BA} + \overrightarrow {BC} \) (2), \(2\overrightarrow {CI} = \overrightarrow {CA} + \overrightarrow {CB} \) (3).
Cộng theo vế (1), (2), (3): \(2\left( {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right) = \left( {\overrightarrow {AB} + \overrightarrow {BA} } \right) + \left( {\overrightarrow {AC} + \overrightarrow {CA} } \right) + \left( {\overrightarrow {BC} + \overrightarrow {CB} } \right) = \vec 0{\rm{. }}\)
Suy ra \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} = \vec 0\).
Do vậy \(\left| {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right| = 0\).
Đáp án: 0.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Do \(M\) là trung điểm của \(AB\) nên ta có \(\overrightarrow {MA} + \overrightarrow {MB} = \vec 0\).
b) Đúng. Do \(N\) là trung điểm của \(CD\) nên ta có \(\overrightarrow {NC} + \overrightarrow {ND} = \vec 0\).
c) Sai. Theo quy tắc cộng, ta có \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} \). (1)
d) Đúng. Ta lại có \(\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BD} + \overrightarrow {DN} \). (2)
Cộng hai đẳng thức (1), (2) vế theo vế, ta được
\(2\overrightarrow {MN} = \left( {\overrightarrow {MA} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CN} + \overrightarrow {DN} } \right)\).
Kết hợp với kết quả ở ý a) và b), ta suy ra được \(2\overrightarrow {MN} = \overrightarrow {AC} + \overrightarrow {BD} \).
Lời giải
a) Đúng. Xét tam giác \(ABD\) nội tiếp đường tròn đường kính \(AD\) nên \(AB \bot BD\); mặt khác \(AB \bot CH\) nên \(BD{\rm{//}}CH\) (1).
b) Đúng. Tương tự, tam giác \(ACD\) nội tiếp đường tròn đường kính \(AD\) nên \(AC \bot CD\); mặt khác \(AC \bot BH\) nên \(CD{\rm{//}}BH\) (2).
c) Sai. Từ (1) và (2) suy ra \(BDCH\) là hình bình hành.
Khi đó, \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HA} + \overrightarrow {HD} = 2\overrightarrow {HO} \) (vì \(O\) là trung điểm \(AD\)).
d) Sai. Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} + \overrightarrow {HA} + \overrightarrow {OH} + \overrightarrow {HB} + \overrightarrow {OH} + \overrightarrow {HC} \)
\( = 3\overrightarrow {OH} + \left( {\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} } \right) = 3\overrightarrow {OH} + 2\overrightarrow {HO} = \overrightarrow {OH} {\rm{. }}\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.