Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - 2y + z - 5 = 0\]. Viết phương trình mặt phẳng \[\left( Q \right)\] song song với mặt phẳng \[\left( P \right)\], cách \[\left( P \right)\] một khoảng bằng 3 và cắt trục \[Ox\] tại điểm có hoành độ dương.
A. \[\left( Q \right):2x - 2y + z + 4 = 0\].
B. \[\left( Q \right):2x - 2y + z - 14 = 0\].
C. \[\left( Q \right):2x - 2y + z - 19 = 0\].
D. \[\left( Q \right):2x - 2y + z - 8 = 0\].
Quảng cáo
Trả lời:

Chọn B
Ta có, \[\left( Q \right)\]song song \[\left( P \right)\]nên phương trình mặt phẳng \[\left( Q \right):2x - 2y + z + C = 0\]; \[C \ne - 5\]
Chọn \[M\left( {0\,;\,0\,;\,5} \right) \in \left( P \right)\]
Ta có \[d\left( {\left( P \right)\,;\,\left( Q \right)} \right) = d\left( {M\,;\,\left( Q \right)} \right) = \frac{{\left| {5 + C} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} = 3\]\[ \Leftrightarrow \left[ \begin{array}{l}C = 4\\C = - 14\end{array} \right.\]
\[C = 4 \Rightarrow \left( Q \right):2x - 2y + z + 4 = 0\] khi đó \[\left( Q \right)\] cắt \[Ox\] tại điểm \[{M_1}\left( { - 2\,;\,0\,;\,0} \right)\]có hoành độ âm nên trường hợp này \[\left( Q \right)\] không thỏa đề bài.
\[C = - 14 \Rightarrow \left( Q \right):2x - 2y + z - 14 = 0\] khi đó \[\left( Q \right)\]cắt \[Ox\] tại điểm \[{M_2}\left( {7\,;\,0\,;\,0} \right)\]có hoành độ dương do đó \[\left( Q \right):2x - 2y + z - 14 = 0\] thỏa đề bài.
Vậy phương trình mặt phẳng \[\left( Q \right):2x - 2y + z - 14 = 0\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Giả sử
Khi đó mặt phẳng () có dạng:
Do
Ta có:
Do là trực tâm tam giác
nên:
Thay vào
ta có:
Do đó
Câu 2
A. \(\frac{{2a}}{3}\).
B. \(\frac{{4a}}{3}\).
C. \(a\).
D. \(\frac{{3a}}{4}\).
Lời giải
Chọn B
Hình chiếu của \(SB\) trên mặt phẳng \(\left( {ABCD} \right)\) là \(AB\) \( \Rightarrow \) Góc giữa \(SB\) và mặt đáy là góc giữa \[SB\] và \(AB\) và bằng góc \(\widehat {SBA} = {45^{\rm{o}}}\).
Tam giác \(SAB\) vuông cân tại \(A\) \( \Rightarrow SA = 2a\).
Chọn hệ trục tọa độ như hình vẽ ta có: \(A\left( {0;0;0} \right)\), \(B\left( {0;2a;0} \right)\), \(C\left( {a;a;0} \right)\), \[D\left( {a;0;0} \right)\], \(S\left( {0;0;2a} \right)\), \(E\left( {\frac{a}{2};0;a} \right)\).
\[\overrightarrow {AC} = \left( {a;a;0} \right)\], \(\overrightarrow {AE} = \left( {\frac{a}{2};0;a} \right)\)\( \Rightarrow \overrightarrow {AC} \wedge \overrightarrow {A{\rm{E}}} = \left( {{a^2}; - {a^2}; - \frac{{{a^2}}}{2}} \right)\)
\( \Rightarrow \) mặt phẳng \(\left( {ACE} \right)\) có véctơ pháp tuyến \(\overrightarrow n = \left( {2; - 2; - 1} \right)\)\( \Rightarrow \left( {ACE} \right):2x - 2y - z = 0\).
Vậy \(d\left( {B,\left( {ACE} \right)} \right) = \frac{{\left| {2.2a} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{{4a}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(x - 2y - 2z = 0\) hoặc \(x + 4y - 2z = 0\).
B. \(x + 2y + 2z = 0\) hoặc \(x - 4y - 2z = 0\).
C. \(x + 2y - 2z = 0\) hoặc \(x + 4y - 2z = 0\).
D. \(x + 2y - 2z = 0\) hoặc \(x - 4y - 2z = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(d\left( {B,\left( {CDM} \right)} \right) = 2\).
B. \(d\left( {B,\left( {CDM} \right)} \right) = 2\sqrt 2 \).
C. \(d\left( {B,\left( {CDM} \right)} \right) = \frac{1}{{\sqrt 2 }}\).
D. \(d\left( {B,\left( {CDM} \right)} \right) = \sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\frac{{20}}{{3\sqrt {129} }}.\]
B. \[\frac{{20}}{{\sqrt {129} }}.\]
C. \[\frac{1}{4}.\]
D. \[\frac{1}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.