Câu hỏi:

12/08/2025 46 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - 2y + z - 5 = 0\]. Viết phương trình mặt phẳng \[\left( Q \right)\] song song với mặt phẳng \[\left( P \right)\], cách \[\left( P \right)\] một khoảng bằng 3 và cắt trục \[Ox\] tại điểm có hoành độ dương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Ta có, \[\left( Q \right)\]song song \[\left( P \right)\]nên phương trình mặt phẳng \[\left( Q \right):2x - 2y + z + C = 0\]; \[C \ne - 5\]

Chọn \[M\left( {0\,;\,0\,;\,5} \right) \in \left( P \right)\]

Ta có \[d\left( {\left( P \right)\,;\,\left( Q \right)} \right) = d\left( {M\,;\,\left( Q \right)} \right) = \frac{{\left| {5 + C} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} = 3\]\[ \Leftrightarrow \left[ \begin{array}{l}C = 4\\C = - 14\end{array} \right.\]

\[C = 4 \Rightarrow \left( Q \right):2x - 2y + z + 4 = 0\] khi đó \[\left( Q \right)\] cắt \[Ox\] tại điểm \[{M_1}\left( { - 2\,;\,0\,;\,0} \right)\]có hoành độ âm nên trường hợp này \[\left( Q \right)\] không thỏa đề bài.

\[C = - 14 \Rightarrow \left( Q \right):2x - 2y + z - 14 = 0\] khi đó \[\left( Q \right)\]cắt \[Ox\] tại điểm \[{M_2}\left( {7\,;\,0\,;\,0} \right)\]có hoành độ dương do đó \[\left( Q \right):2x - 2y + z - 14 = 0\] thỏa đề bài.

Vậy phương trình mặt phẳng \[\left( Q \right):2x - 2y + z - 14 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C 

Giả sử A(a;0;0), B(0;b;0),C(0;0;c),abc0

Khi đó mặt phẳng (α) có dạng: xa+yb+zc=1

Do  M(α)2a+1b-3c=1(1)

Ta có: Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 1)

Do Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 2) là trực tâm tam giác Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 3) nên: Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 4)

Thay Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 5) vào Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 6) ta có: Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 7)

Do đó Viết phương trình mặt phẳng  đi qua , biết  cắt trục  lần lượt tại  sao cho tam giác  nhận  làm trực tâm (ảnh 8)

Lời giải

Chọn B

Hình chiếu của \(SB\) trên mặt phẳng \(\left( {ABCD} \right)\)\(AB\) \( \Rightarrow \) Góc giữa \(SB\) và mặt đáy là góc giữa \[SB\]\(AB\) và bằng góc \(\widehat {SBA} = {45^{\rm{o}}}\).

Tam giác \(SAB\) vuông cân tại \(A\) \( \Rightarrow SA = 2a\).

Chọn hệ trục tọa độ như hình vẽ ta có: \(A\left( {0;0;0} \right)\), \(B\left( {0;2a;0} \right)\), \(C\left( {a;a;0} \right)\), \[D\left( {a;0;0} \right)\], \(S\left( {0;0;2a} \right)\), \(E\left( {\frac{a}{2};0;a} \right)\).

\[\overrightarrow {AC} = \left( {a;a;0} \right)\], \(\overrightarrow {AE} = \left( {\frac{a}{2};0;a} \right)\)\( \Rightarrow \overrightarrow {AC} \wedge \overrightarrow {A{\rm{E}}} = \left( {{a^2}; - {a^2}; - \frac{{{a^2}}}{2}} \right)\)

\( \Rightarrow \) mặt phẳng \(\left( {ACE} \right)\) có véctơ pháp tuyến \(\overrightarrow n = \left( {2; - 2; - 1} \right)\)\( \Rightarrow \left( {ACE} \right):2x - 2y - z = 0\).

Vậy \(d\left( {B,\left( {ACE} \right)} \right) = \frac{{\left| {2.2a} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{{4a}}{3}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP