Cho hình thang vuông \(ABCD\) có đáy lớn \(AB = 4a\), đáy nhỏ \(CD = 2a\), đường cao \(AD = 3a\). Tính \(\overrightarrow {DA} \cdot \overrightarrow {BC} \).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì hình thang vuông \(ABCD\) có đường cao là \(AD\) nên \(AD \bot AB\) và \(AD \bot DC\).
Suy ra \(\overrightarrow {DA} \cdot \overrightarrow {BA} = 0\) và \(\overrightarrow {DA} \cdot \overrightarrow {DC} = 0\).
Khi đó, \(\overrightarrow {DA} \cdot \overrightarrow {BC} = \overrightarrow {DA} \cdot \left( {\overrightarrow {BA} + \overrightarrow {AD} + \overrightarrow {DC} } \right) = \overrightarrow {DA} \cdot \overrightarrow {AD} = - {\overrightarrow {AD} ^2} = - {\left| {\overrightarrow {AD} } \right|^2} = - 9{a^2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có \(\overrightarrow {CM} = \overrightarrow {BM} - \overrightarrow {BC} = \frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} \).
b) Sai. Vì \(G\) là trọng tâm của tam giác \(ACM\) nên
\(3\overrightarrow {BG} = \overrightarrow {BA} + \overrightarrow {BM} + \overrightarrow {BC} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {BA} + \overrightarrow {BC} = \frac{3}{2}\overrightarrow {BA} + \overrightarrow {BC} \Rightarrow \overrightarrow {BG} = \frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} .\)
c) Đúng. Vì \(ABCD\) là hình chữ nhật nên \(BA \bot BC\), suy ra \(\overrightarrow {BC} \cdot \overrightarrow {BA} = 0\).
d) Sai. Ta có \(\overrightarrow {BG} \cdot \overrightarrow {CM} = \left( {\frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA} \cdot \overrightarrow {BC} - \frac{1}{3}{\overrightarrow {BC} ^2}\)
\( = \frac{1}{4} \cdot {\left( {4a} \right)^2} - \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot {\left( {3a} \right)^2} = {a^2}.\) (\(BC = AD = 3a\)).
Lời giải
a) Sai. \(\overrightarrow {AB} \cdot \overrightarrow {AC} = AB \cdot AC\cos \widehat {BAC} = 2a \cdot 3a \cdot \cos 60^\circ = 3{a^2}\).
b) Sai. Do \(I\) là trung điểm \(BC\) nên \(\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).
c) Đúng. Vì \(J \in AC\) và \(12AJ = 7AC\) nên \(\overrightarrow {AJ} = \frac{7}{{12}}\overrightarrow {AC} \).
Khi đó, \(\overrightarrow {BJ} = \overrightarrow {BA} + \overrightarrow {AJ} = - \overrightarrow {AB} + \frac{7}{{12}}\overrightarrow {AC} \).
d) Đúng. Ta có \(\overrightarrow {AI} \cdot \overrightarrow {BJ} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( { - \overrightarrow {AB} + \frac{7}{{12}}\overrightarrow {AC} } \right)\)
\( = \frac{1}{2}\left( { - {{\overrightarrow {AB} }^2} + \frac{7}{{12}}\overrightarrow {AB} \cdot \overrightarrow {AC} - \overrightarrow {AB} \cdot \overrightarrow {AC} + \frac{7}{{12}}{{\overrightarrow {AC} }^2}} \right)\)
\( = \frac{1}{2}\left( { - 4{a^2} + \frac{7}{{12}} \cdot 3{a^2} - 3{a^2} + \frac{7}{{12}} \cdot 9{a^2}} \right) = 0\).
Vậy \(AI \bot BJ\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.