Câu hỏi:

05/08/2025 83 Lưu

Cho tam giác \(ABC\) có \(AB = 2a,AC = 3a,\,\widehat {BAC} = 60^\circ \). Gọi \(I\) là trung điểm đoạn thẳng \(BC\). Điểm \(J\) thuộc đoạn \(AC\) thỏa mãn \(12AJ = 7AC\).

a) \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 4{a^2}\).

b) \(\overrightarrow {AI}  = \frac{3}{2}\overrightarrow {AB}  + \frac{3}{2}\overrightarrow {AC} \).

c) \(\overrightarrow {BJ}  =  - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} \).

d) \(AI \bot BJ\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c (ảnh 1)

a) Sai. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = AB \cdot AC\cos \widehat {BAC} = 2a \cdot 3a \cdot \cos 60^\circ  = 3{a^2}\).

b) Sai. Do \(I\) là trung điểm \(BC\) nên \(\overrightarrow {AI}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \).

c) Đúng. Vì \(J \in AC\) và \(12AJ = 7AC\) nên \(\overrightarrow {AJ}  = \frac{7}{{12}}\overrightarrow {AC} \).

Khi đó, \(\overrightarrow {BJ}  = \overrightarrow {BA}  + \overrightarrow {AJ}  =  - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} \).

d) Đúng. Ta có \(\overrightarrow {AI}  \cdot \overrightarrow {BJ}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\left( { - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} } \right)\)

\( = \frac{1}{2}\left( { - {{\overrightarrow {AB} }^2} + \frac{7}{{12}}\overrightarrow {AB}  \cdot \overrightarrow {AC}  - \overrightarrow {AB}  \cdot \overrightarrow {AC}  + \frac{7}{{12}}{{\overrightarrow {AC} }^2}} \right)\)

\( = \frac{1}{2}\left( { - 4{a^2} + \frac{7}{{12}} \cdot 3{a^2} - 3{a^2} + \frac{7}{{12}} \cdot 9{a^2}} \right) = 0\).

Vậy \(AI \bot BJ\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

b) Sai. \(\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{3}{4}\overrightarrow {BD}  = \overrightarrow {AB}  + \frac{3}{4}\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right) = \frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} .\)

c) Đúng. \(\overrightarrow {EF}  = \overrightarrow {AF}  - \overrightarrow {AE}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} .\)

d) Đúng. Ta có \(\overrightarrow {AF}  \cdot \overrightarrow {EF}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)\)

                                        \( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)

Ta có \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).

\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)

\( \Rightarrow {\overrightarrow {AF} ^2} = {\overrightarrow {EF} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).

Lời giải

Gọi \(\overrightarrow {{v_0}} \) là vận tốc riêng của máy bay \( \Rightarrow \left| {\overrightarrow {{v_0}} } \right| = 700\) (km/h).

 \(\overrightarrow {{v_1}} \) là vận tốc gió \( \Rightarrow \left| {\overrightarrow {{v_1}} } \right| = 40\) (km/h), \(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi gặp gió.

Khi đó \(\overrightarrow {{v_2}}  = \overrightarrow {{v_0}}  + \overrightarrow {{v_1}} \).

Từ giả thiết, dễ thấy \(\left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = 45^\circ \).

Ta có \({\overrightarrow {{v_2}} ^2} = {\left( {\overrightarrow {{v_0}}  + \overrightarrow {{v_1}} } \right)^2} = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\overrightarrow {{v_0}}  \cdot \overrightarrow {{v_1}}  = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right| \cdot \left| {\overrightarrow {{v_1}} } \right| \cdot \cos 45^\circ \)

                \( = {700^2} + {40^2} + 2 \cdot 700 \cdot 40 \cdot \frac{{\sqrt 2 }}{2} = 491\,600 + 28\,000\sqrt 2 .\)

Suy ra \(\left| {\overrightarrow {{v_2}} } \right| = \sqrt {491\,600 + 28\,000\sqrt 2 }  \approx 729\) (km/h).

Đáp án: 729.

Câu 5

A. \(\alpha = 30 \circ \).                                     
B. \(\alpha = 45 \circ \).                       
C. \(\alpha = 60 \circ \).                                     
D. \(\alpha = 120 \circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\cos \widehat {MNP} = \frac{{13}}{{5\sqrt {10} }}\).                                                                        
B. \(\cos \widehat {MNP} = \frac{{13}}{{4\sqrt {10} }}\).
C. \(\cos \widehat {MNP} = \frac{{13}}{{\sqrt {10} }}\).                                                                        
D. \(\cos \widehat {MNP} = \frac{{13}}{{45\sqrt {10} }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP