Câu hỏi:

06/08/2025 2 Lưu

Một hộp đựng 5 quả bóng màu vàng và 3 quả bóng màu trắng, các quả bóng có kích thước và khối lượng như nhau. Lấy ngẫu nhiên lần thứ nhất một quả bóng (không hoàn lại), rồi lần thứ hai lấy một quả bóng khác. Tính xác suất để lần thứ nhất lấy được quả bóng màu vàng, lần thứ hai lấy được quả bóng màu trắng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét các biến cố:

A: "Lần thứ nhất lấy được quả bóng màu vàng";

\(B\) : "Lần thứ hai lấy được quả bóng màu trắng";

C: "Lần thứ nhất lấy được quả bóng màu vàng, lần thứ hai lấy được quả bóng màu trắng".

Khi đó, xác suất để lần thứ hai lấy được quả bóng màu trắng, biết lần thứ nhất lấy được quả bóng màu vàng là xác suất có điều kiện \({\rm{P}}(B\mid A)\) và \({\rm{P}}(C) = {\rm{P}}(A \cap B)\).

Ta có: \({\rm{P}}(A) = \frac{5}{8}\). Vì sau khi lấy một quả bóng màu vàng ở lần thứ nhất thì trong lần thứ hai chỉ còn 4 quả bóng màu vàng và 3 quả bóng màu trắng.

Do đó, \({\rm{P}}(B\mid A) = \frac{3}{7}\). Suy ra \({\rm{P}}(C) = {\rm{P}}(A \cap B) = {\rm{P}}(A) \cdot {\rm{P}}(B\mid A) = \frac{5}{8} \cdot \frac{3}{7} = \frac{{15}}{{56}}\).

Vậy xác suất để lần thứ nhất lấy được quả bóng màu vàng, lần thứ hai lấy được quả bóng màu trắng là \(\frac{{15}}{{56}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vi A và B là hai biến cố độc lập nên các cặp biến cố \(\bar A\) và \(B\) ; \(A\) và \(\bar B\) cũng độc lập.

Theo định nghĩa \(P(\bar A\mid B)\) là xác suất của \(\bar A\) (tức là xác suất không xuất hiện của A ) biết rằng biến cố B đã xảy ra. Vi \(\bar A,\;{\rm{B}}\) độc lập nên việc xảy ra B không ảnh hưởng tới xác suất không xuất hiện của A .

Do đó \(P(\bar A\mid B) = P(\bar A)\).

Tương tự \(P(A\mid \bar B)\) là xác suất của A biết rằng biến cố B không xảy ra. Vì \({\rm{A}},\bar B\) độc lập nên việc không xảy ra \(B\) không ảnh hưởng tới xác suất xuất hiện của A.

Do đó \(P(A\mid \bar B) = P(A)\)

Lời giải

Ta có: \(\frac{{P(A\mid B)}}{{P(A\mid \bar B)}} \approx \frac{{9,755 \cdot {{10}^{ - 3}}}}{{1,235 \cdot {{10}^{ - 3}}}} \approx 7,9 \Rightarrow P(A\mid B) \approx 7,9 \cdot P(A\mid \bar B).\)

Như vậy, xác suất để một người lái xe không thắt dây an toàn bị tử vong khi xảy ra tai nạn giao thông cao gá́p khoảng 7,9 lần xác suất để một người lái xe thắt dây an toàn bị tử vong khi xảy ra tai nạn giao thông. Tức là, không thắt dây an toàn làm tăng nguy cơ bị tử vong khi xảy ra tai nạn giao thông của người lái xe lên gấp khoảng 7,9 lần.