Câu hỏi:

19/08/2025 43 Lưu

Một hộp đựng 24 chai nước giải khát có hình dạng và kích thước như nhau, trong đó có 2 chai nước giải khát ghi giải thường "Bạn nhận được thêm một chai nước giải khát". Chọn ra ngẫu nhiên lần lượt (không hoàn lại) hai chai nước trong hộp. Tính xác suất để cả hai chai đều ghi giải thưởng.

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố:

A: "Chai được chọn ở lần thứ nhất có ghi giải thưởng";

B: "Chai được chọn ở lần thứ hai có ghi giải thưởng";

C: "Cả hai chai được chọn đều ghi giải thưởng".

Khi đó, xác suất để chai được chọn ở lần thứ hai có ghi giải thưởng, biết chai được chọn ở lần thứ nhất có ghi giải thưởng, là xác suất có điều kiện \({\rm{P}}(B\mid A)\) và \({\rm{P}}(C) = {\rm{P}}(A \cap B)\).

Ta có: \({\rm{P}}(A) = \frac{2}{{24}} = \frac{1}{{12}}\). Vì sau khi lấy một chai có ghi giải thưởng thì trong lần thứ hai chỉ còn 1 chai có ghi giải thưởng và tổng số chai là 23 . Do đó, \({\rm{P}}(B\mid A) = \frac{1}{{23}}\). Suy ra \({\rm{P}}(C) = {\rm{P}}(A \cap B) = {\rm{P}}(A) \cdot {\rm{P}}(B\mid A) = \frac{1}{{12}} \cdot \frac{1}{{23}} = \frac{1}{{276}}\).

Vậy xác suất để cả hai chai đều ghi giải thưởng là \(\frac{1}{{276}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Bằng định nghĩa

Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).

Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).

Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.

Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).

Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).

Lời giải

Xét các biến cố:

A: "Lần thứ nhất lấy ra sản phẩm chất lượng thấp";

\(B\) : "Lần thứ hai lấy ra sản phẩm chất lượng thấp";

\(C\) : "Cả hai lần đều lấy ra sản phẩm chất lượng thấp".

Khi đó, xác suất để lần thứ hai lấy ra sản phầm chất lượng thấp, biết lần thứ nhất lấy ra sản phẩm chất lượng thấp, là xác suất có điều kiện \({\rm{P}}(B\mid A)\) và \({\rm{P}}(C) = {\rm{P}}(B \cap A)\).

Ta có: \({\rm{P}}(A) = \frac{8}{{25}};{\rm{P}}(B\mid A) = \frac{7}{{24}}\). Suy ra \({\rm{P}}(C) = {\rm{P}}(B \cap A) = {\rm{P}}(A) \cdot {\rm{P}}(B\mid A) = \frac{8}{{25}} \cdot \frac{7}{{24}} = \frac{7}{{75}}\).

Vậy xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là \(\frac{7}{{75}}\).