Câu hỏi:

19/08/2025 43 Lưu

Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) cùng vuông góc với đáy (ABC), tam giác ABC vuông cân ở A và có đường cao AH, H Î BC. Gọi O là hình chiếu vuông góc của A lên (SBC). Khi đó:

a) SC ^ (ABC).

b) AB ^ SC.

c) (SAH) ^ (SBC).

d) O là trực tâm tam giác SBC.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

SC ^ (ABC). (ảnh 1)

a) Có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAC} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {SAC} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABC} \right)\).

b) Có AB ^ AC (do DABC vuông cân tại A), SA ^ AB (do SA ^ (ABC)).

Suy ra AB ^ (SAC) Þ AB ^ SC.

c) Vì SA ^ (ABC) Þ SA ^ BC mà BC ^ AH nên BC ^ (SAH) mà BC Ì (SBC)

nên (SBC) ^ (SAH).

d) Có (SBC) ^ (SAH) và AO ^ (SBC) nên AO ^ SH Þ O Î SH.

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. (SBD) ^ (ABCD).  
B. (SBC) ^ (ABCD).
C. (SAD) ^ (ABCD).                       
D. (SAB) ^ (ABCD).

Lời giải

A

Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA = SC. Khẳng định nào sau đây đúng?  	 (ảnh 1)

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC.

Vì SA = SC nên DSAC cân tại S nên SO ^ AC mà AC ^ BD nên AC ^ (SBD).

Mà AC Ì (ABCD) nên (SBD) ^ (ABCD).

Câu 2

A. (SAC) ^ (SBC).  
B. (SAB) ^ (ABC). 
C. (SAC) ^ (ABC).                          
D. (SAB) ^ (SBC).

Lời giải

B

Cho hình chóp S.ABC có SA ^ (ABC), tam giác ABC vuông tại B, kết luận nào sau đây sai? (ảnh 1)

Có SA ^ (ABC) mà SA Ì (SAB); SA Ì (SAC) nên (SAB) ^ (ABC); (SAC) ^ (ABC).

Vì SA ^ (ABC) Þ SA ^ BC mà BC ^ AB nên BC ^ (SAB) mà BC Ì (SBC) nên (SBC) ^ (SAB).

Câu 4

A. Nếu một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia thì hai mặt phẳng vuông góc với nhau. 
B. Nếu hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì chúng song song với nhau. 
C. Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này đều vuông góc với mặt phẳng kia. 
D. Nếu hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì chúng vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP