Câu hỏi:

19/08/2025 66 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H và K lần lượt là trung điểm của AB và CD. Khi đó:

a) AD ^ (SAB).

b) SA ^ CD.

c) CD ^ (SHK).

d) SH ^ (ABCD).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi đó:  a) AD ^ (SAB). (ảnh 1)

a) DSAB là tam giác đều và SH là trung tuyến nên SH là đường cao.

Suy ra SH ^ AB mà (SAB) ^ (ABCD) Þ SH ^ (ABCD) Þ SH ^ AD.

Lại có AD ^ AB (do ABCD là hình vuông) nên AD ^ (SAB).

b) Vì SH ^ (ABCD) Þ SH ^ CD.

c) Vì SH ^ CD mà CD ^ HK nên CD ^ (SHK).

d) Theo câu a, SH ^ (ABCD).

Đáp án: a) Đúng;    b) Sai;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. (SBD) ^ (ABCD).  
B. (SBC) ^ (ABCD).
C. (SAD) ^ (ABCD).                       
D. (SAB) ^ (ABCD).

Lời giải

A

Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA = SC. Khẳng định nào sau đây đúng?  	 (ảnh 1)

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC.

Vì SA = SC nên DSAC cân tại S nên SO ^ AC mà AC ^ BD nên AC ^ (SBD).

Mà AC Ì (ABCD) nên (SBD) ^ (ABCD).

Câu 2

A. (SAC) ^ (SBC).  
B. (SAB) ^ (ABC). 
C. (SAC) ^ (ABC).                          
D. (SAB) ^ (SBC).

Lời giải

B

Cho hình chóp S.ABC có SA ^ (ABC), tam giác ABC vuông tại B, kết luận nào sau đây sai? (ảnh 1)

Có SA ^ (ABC) mà SA Ì (SAB); SA Ì (SAC) nên (SAB) ^ (ABC); (SAC) ^ (ABC).

Vì SA ^ (ABC) Þ SA ^ BC mà BC ^ AB nên BC ^ (SAB) mà BC Ì (SBC) nên (SBC) ^ (SAB).

Câu 3

A. (SBC).                 
B. (SAC).                 
C. (SAD).                          
D. (ABCD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. (SAB).                 
B. (SBD).                 
C. (SBC).                          
D. (SAD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP