Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với (ABCD). Gọi α là góc giữa BD và (SAD). Tính sinα (làm tròn kết quả đến hàng phần mười).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với (ABCD). Gọi α là góc giữa BD và (SAD). Tính sinα (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:

Gọi I là trung điểm SA.
Ta có BI ^ SA và BI ^ AD (do AD ^ AB và AD ^ SH).
Do đó BI ^ (SAD).
Nên hình chiếu của BD lên (SAD) là ID,
Do đó góc giữa BD và (SAD) là \(\alpha = \widehat {BDI}\).
Đặt AB = a, ta có \(BI = \frac{{a\sqrt 3 }}{2};BD = a\sqrt 2 \).
Xét DBID vuông tại I, có \(\sin \alpha = \frac{{BI}}{{BD}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4} \approx 0,6\).
Trả lời: 0,6.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
A

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC.
Vì SA = SC nên DSAC cân tại S nên SO ^ AC mà AC ^ BD nên AC ^ (SBD).
Mà AC Ì (ABCD) nên (SBD) ^ (ABCD).
Câu 2
Lời giải
B

Có SA ^ (ABC) mà SA Ì (SAB); SA Ì (SAC) nên (SAB) ^ (ABC); (SAC) ^ (ABC).
Vì SA ^ (ABC) Þ SA ^ BC mà BC ^ AB nên BC ^ (SAB) mà BC Ì (SBC) nên (SBC) ^ (SAB).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.