Câu hỏi:

19/08/2025 25 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với (ABCD). Gọi α là góc giữa BD và (SAD). Tính sinα (làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính sinα (làm tròn kết quả đến hàng phần mười). (ảnh 1)

Gọi I là trung điểm SA.

Ta có BI ^ SA và BI ^ AD (do AD ^ AB và AD ^ SH).

Do đó BI ^ (SAD).

Nên hình chiếu của BD lên (SAD) là ID,

Do đó góc giữa BD và (SAD) là \(\alpha = \widehat {BDI}\).

Đặt AB = a, ta có \(BI = \frac{{a\sqrt 3 }}{2};BD = a\sqrt 2 \).

Xét DBID vuông tại I, có \(\sin \alpha = \frac{{BI}}{{BD}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4} \approx 0,6\).

Trả lời: 0,6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABC có SA ^ (ABC), tam giác ABC vuông tại B, kết luận nào sau đây sai? (ảnh 1)

Có SA ^ (ABC) mà SA Ì (SAB); SA Ì (SAC) nên (SAB) ^ (ABC); (SAC) ^ (ABC).

Vì SA ^ (ABC) Þ SA ^ BC mà BC ^ AB nên BC ^ (SAB) mà BC Ì (SBC) nên (SBC) ^ (SAB).

Câu 2

Lời giải

A

Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA = SC. Khẳng định nào sau đây đúng?  	 (ảnh 1)

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC.

Vì SA = SC nên DSAC cân tại S nên SO ^ AC mà AC ^ BD nên AC ^ (SBD).

Mà AC Ì (ABCD) nên (SBD) ^ (ABCD).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP