Câu hỏi:

07/08/2025 14 Lưu

PHẦN II. TRẢ LỜI NGẮN

Hình bên dưới minh họa hình ảnh một chiệc gậy dài 3m đặt dựa vào tường, góc nghiêng giữa chiếc gậy và mặt đất là 65°. Đầu trên của chiếc gậy đặt vào vị trí M của tường. Tính khoảng cách từ vị trí M đến mặt đất (làm tròn đến hàng phần mười của mét).

Tính khoảng cách từ vị trí M đến mặt đất (làm tròn đến hàng phần mười của mét). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét DMHO vuông tại H, có \(MH = OM.\sin 65^\circ = 3.\sin 65^\circ \approx 2,7\).

Vậy khoảng cách từ vị trí M đến mặt đất là khoảng 2,7 m.

Trả lời: 2,7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Tính khoảng cách giữa hai mặt phẳng (ABC) và (A'B'C'). (ảnh 1)

Ta có (ABC) // (A'B'C') nên d((ABC), (A'B'C')) = d(A', (ABC)).

Gọi H là hình chiếu của A' trên AB.

Vì (A'ABB') ^ (ABC), (A'ABB') Ç (ABC) = AB, A'H Ì (A'ABB') và A'H ^ AB nên A'H ^ (ABC).

Xét DA'AH vuông tại H có \[A'H = A'A\sin \widehat {A'AH} = 2a\sin 60^\circ = a\sqrt 3 \].

Suy ra d((ABC), (A'B'C')) = d(A', (ABC)) = A'H = \(a\sqrt 3 \).

Lời giải

C (ảnh 1)

a) Tam giác SAB đều nên SH ^ AB mà (SAB) ^ (ABCD) Þ SH ^ (ABCD).

Ta có AH Ç (SBD) = B \( \Rightarrow \frac{{d\left( {A,\left( {SBD} \right)} \right)}}{{d\left( {H,\left( {SBD} \right)} \right)}} = \frac{{AB}}{{HB}} = 2\).

Gọi O là giao điểm của AC và BD.

Kẻ HI ^ BD mà SH ^ BD (do SH ^ (ABCD)) Þ BD ^ (SHI).

Kẻ HK ^ SI mà BD ^ HK (do BD ^ (SHI)) nên HK ^ (SBD).

Do đó d(H, (SBD)) = HK.

Ta có HO là đường trung bình của D ABC Þ HO // BC và \(HO = \frac{{BC}}{2} = \frac{{a\sqrt 3 }}{2}\).

Lại có BC ^ AB nên HO ^ AB.

Vì SAB là tam giác đều cạnh a nên \(HB = \frac{a}{2};SH = \frac{{a\sqrt 3 }}{2}\).

Xét DOHB vuông tại H, ta có \(\frac{1}{{H{I^2}}} = \frac{1}{{H{O^2}}} + \frac{1}{{H{B^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HI = \frac{{a\sqrt 3 }}{4}\).

Xét DSHI vuông tại H có \(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{I^2}}} = \frac{4}{{3{a^2}}} + \frac{{16}}{{3{a^2}}} = \frac{{20}}{{3{a^2}}}\) \( \Rightarrow HK = \frac{{a\sqrt {15} }}{{10}}\).

Suy ra d(A, (SBD)) \( = 2.\frac{{a\sqrt {15} }}{{10}} = \frac{{a\sqrt {15} }}{5}\).

b) Gọi M là trung điểm của CD.

Vì ABCD là hình chữ nhật nên HM ^ CD mà SH ^ HM (do SH ^ (ABCD)).

Suy ra d(SH, CD) = HM = AD = \(a\sqrt 3 \).

c) Vì BC // AD nên BC // (SAD).

Suy ra d(BC, SD) = d(BC, (SAD)) = d(B, (SAD)) = 2d(H, (SAD)).

Có SH ^ AD và AD ^ AH nên AD ^ (SHA).

Kẻ HN ^ SA mà HN ^ AD (do AD ^ (SHA)) Þ HN ^ (SAD).

Do đó d(H, (SAD)) = HN.

Xét DSHA vuông tại H, HN là đường cao có:

\(\frac{1}{{H{N^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{H{A^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HN = \frac{{a\sqrt 3 }}{4}\).

Vậy d(B, (SAD)) = \(2.\frac{{a\sqrt 3 }}{4} = \frac{{a\sqrt 3 }}{2}\).

d) Có AB // CD Þ CD // (SAB).

Do đó d(CD, SB) = d(CD, (SAB)) = d(C, (SAB)).

Có CB ^ AB mà CB ^ SH (do SH ^ (ABCD)) Þ CB ^ (SAB).

Do đó d(C, (SAB)) = CB = \(a\sqrt 3 \).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP