PHẦN II. TRẢ LỜI NGẮN
Hình bên dưới minh họa hình ảnh một chiệc gậy dài 3m đặt dựa vào tường, góc nghiêng giữa chiếc gậy và mặt đất là 65°. Đầu trên của chiếc gậy đặt vào vị trí M của tường. Tính khoảng cách từ vị trí M đến mặt đất (làm tròn đến hàng phần mười của mét).

PHẦN II. TRẢ LỜI NGẮN
Hình bên dưới minh họa hình ảnh một chiệc gậy dài 3m đặt dựa vào tường, góc nghiêng giữa chiếc gậy và mặt đất là 65°. Đầu trên của chiếc gậy đặt vào vị trí M của tường. Tính khoảng cách từ vị trí M đến mặt đất (làm tròn đến hàng phần mười của mét).
Quảng cáo
Trả lời:
Xét DMHO vuông tại H, có \(MH = OM.\sin 65^\circ = 3.\sin 65^\circ \approx 2,7\).
Vậy khoảng cách từ vị trí M đến mặt đất là khoảng 2,7 m.
Trả lời: 2,7.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Ta có (ABC) // (A'B'C') nên d((ABC), (A'B'C')) = d(A', (ABC)).
Gọi H là hình chiếu của A' trên AB.
Vì (A'ABB') ^ (ABC), (A'ABB') Ç (ABC) = AB, A'H Ì (A'ABB') và A'H ^ AB nên A'H ^ (ABC).
Xét DA'AH vuông tại H có \[A'H = A'A\sin \widehat {A'AH} = 2a\sin 60^\circ = a\sqrt 3 \].
Suy ra d((ABC), (A'B'C')) = d(A', (ABC)) = A'H = \(a\sqrt 3 \).
Lời giải
a) Tam giác SAB đều nên SH ^ AB mà (SAB) ^ (ABCD) Þ SH ^ (ABCD).
Ta có AH Ç (SBD) = B \( \Rightarrow \frac{{d\left( {A,\left( {SBD} \right)} \right)}}{{d\left( {H,\left( {SBD} \right)} \right)}} = \frac{{AB}}{{HB}} = 2\).
Gọi O là giao điểm của AC và BD.
Kẻ HI ^ BD mà SH ^ BD (do SH ^ (ABCD)) Þ BD ^ (SHI).
Kẻ HK ^ SI mà BD ^ HK (do BD ^ (SHI)) nên HK ^ (SBD).
Do đó d(H, (SBD)) = HK.
Ta có HO là đường trung bình của D ABC Þ HO // BC và \(HO = \frac{{BC}}{2} = \frac{{a\sqrt 3 }}{2}\).
Lại có BC ^ AB nên HO ^ AB.
Vì SAB là tam giác đều cạnh a nên \(HB = \frac{a}{2};SH = \frac{{a\sqrt 3 }}{2}\).
Xét DOHB vuông tại H, ta có \(\frac{1}{{H{I^2}}} = \frac{1}{{H{O^2}}} + \frac{1}{{H{B^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HI = \frac{{a\sqrt 3 }}{4}\).
Xét DSHI vuông tại H có \(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{I^2}}} = \frac{4}{{3{a^2}}} + \frac{{16}}{{3{a^2}}} = \frac{{20}}{{3{a^2}}}\) \( \Rightarrow HK = \frac{{a\sqrt {15} }}{{10}}\).
Suy ra d(A, (SBD)) \( = 2.\frac{{a\sqrt {15} }}{{10}} = \frac{{a\sqrt {15} }}{5}\).
b) Gọi M là trung điểm của CD.
Vì ABCD là hình chữ nhật nên HM ^ CD mà SH ^ HM (do SH ^ (ABCD)).
Suy ra d(SH, CD) = HM = AD = \(a\sqrt 3 \).
c) Vì BC // AD nên BC // (SAD).
Suy ra d(BC, SD) = d(BC, (SAD)) = d(B, (SAD)) = 2d(H, (SAD)).
Có SH ^ AD và AD ^ AH nên AD ^ (SHA).
Kẻ HN ^ SA mà HN ^ AD (do AD ^ (SHA)) Þ HN ^ (SAD).
Do đó d(H, (SAD)) = HN.
Xét DSHA vuông tại H, HN là đường cao có:
\(\frac{1}{{H{N^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{H{A^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HN = \frac{{a\sqrt 3 }}{4}\).
Vậy d(B, (SAD)) = \(2.\frac{{a\sqrt 3 }}{4} = \frac{{a\sqrt 3 }}{2}\).
d) Có AB // CD Þ CD // (SAB).
Do đó d(CD, SB) = d(CD, (SAB)) = d(C, (SAB)).
Có CB ^ AB mà CB ^ SH (do SH ^ (ABCD)) Þ CB ^ (SAB).
Do đó d(C, (SAB)) = CB = \(a\sqrt 3 \).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.