Câu hỏi:

19/08/2025 25 Lưu

Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SAB là tam giác đều, (SAB) ^ (ABCD), AB = 1, AD = 2. Tính khoảng cách giữa BC và mặt phẳng (SAD) (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính khoảng cách giữa BC và mặt phẳng (SAD) (làm tròn kết quả đến hàng phần trăm). (ảnh 1)

Vì BC // AD nên BC // (SAD).

Khi đó d(BC, (SAD)) = d(B, (SAD)).

Gọi H là hình chiếu của B trên SA.

Do (SAB) ^ (ABCD); (SAB) Ç (ABCD) = AB và DA ^ AB nên AD ^ (SAB). Suy ra  (SAD) ^ (SAB).

Mà (SAB) Ç (SAD) = SA và BH ^ SA nên BH ^ (SAD).

Xét DSAB đều cạnh 1 nên \(BH = \frac{{\sqrt 3 }}{2} \approx 0,87\).

Trả lời: 0,87.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Khoảng cách từ điểm A đến mặt phẳng (SBC) bằng (ảnh 1)

Kẻ AH ^ BC mà BC ^ SA (SA ^ (ABC)) Þ BC ^ (SAH).

Kẻ AK ^ SH mà BC ^ AK (do BC ^ (SAH)) Þ AK ^ (SBC).

Do đó d(A, (SBC)) = AK.

Xét DABC vuông tại A, đường cao AH có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{3{a^2}}} = \frac{4}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt 3 }}{2}\).

Xét DSAH vuông tại A, AK là đường cao, ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{H^2}}} = \frac{1}{{4{a^2}}} + \frac{4}{{3{a^2}}} = \frac{{19}}{{12{a^2}}}\).

Suy ra \(AK = \frac{{2a\sqrt {57} }}{{19}}\).

Lời giải

D

Khoảng cách từ điểm B đến đường thẳng AC bằng (ảnh 1)

Ta có d(B, AC) = AB = 3a.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP