Trong kì kiểm tra môn Toán của một trường trung học phổ thông có 200 học sinh tham gia, trong đó có 95 học sinh nam và 105 học sinh nữ. Khi công bố kết quả của kì kiểm tra đó, có 50 học sinh đạt điểm giỏi, trong đó có 24 học sinh nam và 26 học sinh nữ. Chọn ra ngẫu nhiên một học sinh trong số 200 học sinh đó. Tính xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ (làm tròn kết quả đến hàng phần trăm).
Trong kì kiểm tra môn Toán của một trường trung học phổ thông có 200 học sinh tham gia, trong đó có 95 học sinh nam và 105 học sinh nữ. Khi công bố kết quả của kì kiểm tra đó, có 50 học sinh đạt điểm giỏi, trong đó có 24 học sinh nam và 26 học sinh nữ. Chọn ra ngẫu nhiên một học sinh trong số 200 học sinh đó. Tính xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:

Xét hai biến cố sau:
A: "Học sinh được chọn ra đạt điểm giỏi";
\(B\) : "Học sinh được chọn ra là học sinh nữ".
Khi đó, xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, chính là xác suất của \(A\) với điều kiện \(B\).
Do có 26 học sinh nữ đạt điểm giỏi nên
\({\rm{P}}(A \cap B) = \frac{{26}}{{200}} = 0,13.{\rm{ }}\)
Do có 105 học sinh nữ nên \({\rm{P}}(B) = \frac{{105}}{{200}} = 0,525\). Vì thế, ta có:
\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{0,13}}{{0,525}} \approx 0,25.\)
Vậy xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, là 0,25 .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cách 1: Bằng định nghĩa
Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).
Cách 2: Bằng công thức
Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).
Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.
Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).
Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.
Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).
Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).
Lời giải
Xét các biến cố:
A: "Lần thứ nhất lấy ra sản phẩm chất lượng thấp";
\(B\) : "Lần thứ hai lấy ra sản phẩm chất lượng thấp";
\(C\) : "Cả hai lần đều lấy ra sản phẩm chất lượng thấp".
Khi đó, xác suất để lần thứ hai lấy ra sản phầm chất lượng thấp, biết lần thứ nhất lấy ra sản phẩm chất lượng thấp, là xác suất có điều kiện \({\rm{P}}(B\mid A)\) và \({\rm{P}}(C) = {\rm{P}}(B \cap A)\).
Ta có: \({\rm{P}}(A) = \frac{8}{{25}};{\rm{P}}(B\mid A) = \frac{7}{{24}}\). Suy ra \({\rm{P}}(C) = {\rm{P}}(B \cap A) = {\rm{P}}(A) \cdot {\rm{P}}(B\mid A) = \frac{8}{{25}} \cdot \frac{7}{{24}} = \frac{7}{{75}}\).
Vậy xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là \(\frac{7}{{75}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.