Một bác thợ xây bơm nước vào bể chứa nước. Gọi h(t) là thể tích nước bơm được sau t giây. Cho h'(t) = 3at2 + bt (m3/s) và ban đầu bể không có nước. Sau 5 giây thì thể tích nước trong bể là 150m3. Sau 10 giây thì thể tích nước trong bể là 1100m3 . Hỏi thể tích nước trong bể sau khi bơm được 20 giây là bao nhiêu.
Quảng cáo
Trả lời:
Chọn A
Ta có :
\(h'\left( t \right) = 3a{t^2} + bt\)
\[ \Rightarrow h\left( t \right) = \int {\left( {3a{t^2} + bt} \right)} dt = a{t^3} + \frac{1}{2}b{t^2} + C\]
\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2} + C\]
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2}\]
Sau 5 giây thì thể tích nước trong bể là : \[h\left( 5 \right) = 150 \Leftrightarrow 125a + \frac{{25}}{2}b = 150\]
Sau 10 giây thì thể tích nước trong bể là :\[h\left( {10} \right) = 1100 \Leftrightarrow 1000a + 50b = 1100\]
Ta có hệ : \[\left\{ \begin{array}{l}125a + \frac{{25}}{2}b = 150\\1000a + 50b = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\]
\[ \Rightarrow h\left( t \right) = {t^3} + {t^2}\]
thể tích nước trong bể sau khi bơm được 20 giây là \[h\left( {20} \right) = {20^3} + {20^2} = 8400{m^3}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Ta có :
\(h'\left( t \right) = \frac{1}{5}\sqrt[3]{t}\)
\( \Rightarrow h\left( t \right) = \int {\frac{1}{5}\sqrt[3]{t}} dx = \frac{1}{5}\int {{t^{\frac{1}{3}}}} dx = \frac{1}{5}\frac{{{t^{\frac{1}{3} + 1}}}}{{\frac{1}{3} + 1}} + C = \frac{3}{{20}}t\sqrt[3]{t} + C\)
\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t} + C\)
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t}\)
mức nước ở bồn sau khi bơm nước được 6 giây: \(h\left( 6 \right) = \frac{3}{{20}}.6\sqrt[3]{6} \approx 1,64m\)
Lời giải
Chọn C
Ta có :
\(h'\left( t \right) = 10t + 500\)
\( \Rightarrow h\left( t \right) = \int {\left( {10t + 500} \right)} dx = 5{t^2} + 500t + C\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t + C\)
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t\)
thủy điện đã xả lũ trong 40 phút = 2400 giây thì thoát đi một lượng nước là:
\(h\left( {2400} \right) = {5.2400^2} + 500.2400 = {3.10^3}\left( {{m^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.