Kiểm tra tính song song hoặc trùng nhau của các cặp đường thẳng sau:
a) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 2 + t}\\{z = 1 + 2t}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2{t^\prime }}\\{y = 5 + 2{t^\prime }}\\{z = 1 + 4{t^\prime }}\end{array}} \right.\)
b) \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 1}}{2}\) và \({d^\prime }:\frac{{x - 2}}{3} = \frac{{y - 3}}{3} = \frac{{z - 3}}{6}\).
Kiểm tra tính song song hoặc trùng nhau của các cặp đường thẳng sau:
a) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 2 + t}\\{z = 1 + 2t}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2{t^\prime }}\\{y = 5 + 2{t^\prime }}\\{z = 1 + 4{t^\prime }}\end{array}} \right.\)
b) \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 1}}{2}\) và \({d^\prime }:\frac{{x - 2}}{3} = \frac{{y - 3}}{3} = \frac{{z - 3}}{6}\).
Quảng cáo
Trả lời:
a) Đường thẳng \(d\) đi qua điểm \(M(1;2;1)\) và có vectơ chỉ phương \(\vec a = (1;1;2)\).
Đường thẳng \({d^\prime }\) có vectơ chỉ phương \({\vec a^\prime } = (2;2;4) = 2\vec a\).
Thay toạ độ điểm \(M\) vào phương trình của \({d^\prime }\), ta được:
\(\left\{ {\begin{array}{*{20}{l}}{1 = 2 + 2{t^\prime }}\\{2 = 5 + 2{t^\prime }}\\{1 = 1 + 4{t^\prime }}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{t^\prime } = - \frac{1}{2}}\\{{t^\prime } = - \frac{3}{2}}\\{{t^\prime } = 0}\end{array}} \right.} \right.{\rm{ (vô nghiệm)}}{\rm{. }}\)Suy ra \(M\) không thuộc \({d^\prime }\). Vậy \(d//{d^\prime }\).
b ) Đường thẳng \(d\) đi qua điểm \(M(1;2;1)\) và có vectơ chỉ phương \(\vec a = (1;1;2)\).
Đường thẳng \({d^\prime }\) có vectơ chỉ phương \({\vec a^\prime } = (3;3;6) = 3\vec a\).
Thay toạ độ điểm \(M\) vào phương trình của \({d^\prime }\), ta được: \(\frac{{1 - 2}}{3} = \frac{{2 - 3}}{3} = \frac{{1 - 3}}{6}{\rm{. }}\)
Phương trình nghiệm đúng, suy ra \(M\) thuộc \({d^\prime }\). Vậy \(d \equiv {d^\prime }\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}( - 7;1; - 2)\) và có \({\vec u_1} = (5; - 7; - 2)\) là vectơ chỉ phương.
Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}( - 5; - 10;3)\) và có \({\vec u_2} = ( - 3; - 4;7)\) là vectơ chi phương.
Ta có: \(\frac{5}{{ - 3}} \ne \frac{{ - 7}}{{ - 4}}\), suy ra \({\vec u_1},{\vec u_2}\) không cùng phương;
\(\overrightarrow {{M_1}{M_2}} = (2; - 11;5),{\rm{ }}\left[ {{{\vec u}_1},{{\vec u}_2}} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 7}&{ - 2}\\{ - 4}&7\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&5\\7&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}5&{ - 7}\\{ - 3}&{ - 4}\end{array}} \right|} \right) = ( - 57; - 29; - 41).\)
Do \(\left[ {{{\vec u}_1},{{\vec u}_2}} \right] \cdot \overrightarrow {{M_1}{M_2}} = ( - 57) \cdot 2 + ( - 29) \cdot ( - 11) + ( - 41) \cdot 5 = 0\) nên \({\vec u_1}\), \({\vec u_2}\), \(\overrightarrow {{M_1}{M_2}} \) đồng phẳng.
Vậy \({\Delta _1}\) và \({\Delta _2}\) cắt nhau.
b) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}( - 2;1;0)\) và có \({\vec u_1} = (5; - 1;3)\) là vectơ chỉ phương.
Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}( - 2;1;1)\) và có \({\vec u_2} = (4;5; - 6)\) là vectơ chỉ phương.
Ta có: \(\frac{5}{4} \ne \frac{{ - 1}}{5}\), suy ra \({\vec u_1},{\vec u_2}\) không cùng phương;
\(\overrightarrow {{M_1}{M_2}} = (0;0;1),{\rm{ }}\left[ {{{\vec u}_1},{{\vec u}_2}} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&3\\5&{ - 6}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&5\\{ - 6}&4\end{array}} \right|;{\rm{ }}\left| {{\mkern 1mu} \begin{array}{*{20}{c}}5&{ - 1}\\4&5\end{array}} \right|} \right) = ( - 9;42;29).\)
Do \(\left[ {{{\vec u}_1},{{\vec u}_2}} \right] \cdot \overrightarrow {{M_1}{M_2}} = ( - 9) \cdot 0 + 42 \cdot 0 + 29 \cdot 1 = 29 \ne 0\) nên \({\vec u_1},{\vec u_2},\overrightarrow {{M_1}{M_2}} \) không đồng phẳng.
Vậy \({\Delta _1},{\Delta _2}\) chéo nhau.
c) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}(0; - 5;1)\) và có \({\vec u_1} = (3;2; - 3)\) là vectơ chỉ phương.
Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}(1;3;1)\) và có \({\vec u_2} = ( - 6; - 4;6)\) là vectơ chỉ phương.
Ta có: \( - 2{\vec u_1} = {\vec u_2}\), suy ra \({\vec u_1},{\vec u_2}\) cùng phương;
\(\overrightarrow {{M_1}{M_2}} = (1;8;0){\rm{ và }}\frac{3}{1} \ne \frac{2}{8}{\rm{ nên }}{\vec u_1},\overrightarrow {{M_1}{M_2}} {\rm{ không cùng phương}}{\rm{. }}\)
Vậy \({\Delta _1}//{\Delta _2}\).
Lời giải
a) Đường thẳng d đi qua \({\rm{M}}(7;3;2)\) và có vectơ chí phương \(\vec a = (4; - 2; - 2)\)
Đường thắng d' đi qua \({\rm{N}}(3;5;4)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }} = (2; - 1; - 1) = \frac{1}{2}\vec a\)
Thay tọa độ điếm M vào phương trình đường thắng d' ta được
\(\frac{{7 - 3}}{2} = \frac{{3 - 5}}{{ - 1}} = \frac{{2 - 4}}{{ - 1}}\) (luôn đúng). Suy ra điếm \({\rm{M}} \in {{\rm{d}}^\prime }\).
Vậy \({\rm{d}} \equiv d\) '.
b) Đường thắng d đi qua \({\rm{M}}(0;0;1)\) và có vectơ chỉ phương \(\vec a = (3;3;4)\)
Đường thẳng d' đi qua \({\rm{N}}(2;9;5)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }} = (3;3;4) = \vec a\)
Thay tọa độ điếm M vào phương trình đường thắng \({{\rm{d}}^\prime }\) ta có:
\(\frac{{0 - 2}}{3} = \frac{{0 - 9}}{3} = \frac{{1 - 5}}{4}\) (vô lí). Suy ra \(M \notin {d^\prime }\).
Vậy d // d'.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.