Kiểm tra tính vuông góc của các cặp đường thẳng sau:
a) \(d:\frac{x}{1} = \frac{{y + 1}}{{ - 3}} = \frac{z}{1}\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = - 2 + t}\\{y = t}\\{z = - 6 + 2t}\end{array}} \right.\)
b) \(d:\frac{{x + 2}}{7} = \frac{{y + 1}}{3} = \frac{{z + 1}}{1}\) và \({d^\prime }:\frac{{x + 2}}{2} = \frac{{y - 5}}{2} = \frac{{z - 5}}{2}\).
Kiểm tra tính vuông góc của các cặp đường thẳng sau:
a) \(d:\frac{x}{1} = \frac{{y + 1}}{{ - 3}} = \frac{z}{1}\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = - 2 + t}\\{y = t}\\{z = - 6 + 2t}\end{array}} \right.\)
b) \(d:\frac{{x + 2}}{7} = \frac{{y + 1}}{3} = \frac{{z + 1}}{1}\) và \({d^\prime }:\frac{{x + 2}}{2} = \frac{{y - 5}}{2} = \frac{{z - 5}}{2}\).
Quảng cáo
Trả lời:
a) Đường thắng d và d' lần lượt có vectơ chỉ phương là \(\vec a = (1; - 3;1),\overrightarrow {{a^\prime }} = (1;1;2)\).
Ta có \(\vec a \cdot \overrightarrow {{a^\prime }} = 1.1 + ( - 3) \cdot 1 + 1.2 = 0\).
Do đó d và d' vuông góc với nhau.
b) Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\vec a = (7;3;1),\overrightarrow {{a^\prime }} = (2;2;2)\).
Ta có \(\vec a \cdot \overrightarrow {{a^\prime }} = 7.2 + 3.2 + 1.2 = 22 \ne 0\).
Do đó d và d' không vuông góc với nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đường thẳng d đi qua \({\rm{M}}(7;3;2)\) và có vectơ chí phương \(\vec a = (4; - 2; - 2)\)
Đường thắng d' đi qua \({\rm{N}}(3;5;4)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }} = (2; - 1; - 1) = \frac{1}{2}\vec a\)
Thay tọa độ điếm M vào phương trình đường thắng d' ta được
\(\frac{{7 - 3}}{2} = \frac{{3 - 5}}{{ - 1}} = \frac{{2 - 4}}{{ - 1}}\) (luôn đúng). Suy ra điếm \({\rm{M}} \in {{\rm{d}}^\prime }\).
Vậy \({\rm{d}} \equiv d\) '.
b) Đường thắng d đi qua \({\rm{M}}(0;0;1)\) và có vectơ chỉ phương \(\vec a = (3;3;4)\)
Đường thẳng d' đi qua \({\rm{N}}(2;9;5)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }} = (3;3;4) = \vec a\)
Thay tọa độ điếm M vào phương trình đường thắng \({{\rm{d}}^\prime }\) ta có:
\(\frac{{0 - 2}}{3} = \frac{{0 - 9}}{3} = \frac{{1 - 5}}{4}\) (vô lí). Suy ra \(M \notin {d^\prime }\).
Vậy d // d'.
Lời giải
Đường thẳng \({\Delta _1}\) đi qua \({A_1}(1;2; - 1)\) và có vectơ chỉ phương \({\vec u_1} = ( - 1;1;2)\). Đường thẳng \({\Delta _2}\) đi qua \({A_2}( - 6;5;5)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = (1;1;2)\). Ta có \(\overrightarrow {{A_1}{A_2}} = ( - 7;3;6)\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = (0;4; - 2)\). Do \(\overrightarrow {{A_1}{A_2}} \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 7) \cdot 0 + 3 \cdot 4 + 6 \cdot ( - 2) = 0\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \vec 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.