Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\). Hỏi đường thẳng \(\Delta \) có vuông góc với trục Oz hay không?
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\). Hỏi đường thẳng \(\Delta \) có vuông góc với trục Oz hay không?
Quảng cáo
Trả lời:

Ta có \(\overrightarrow {{u_\Delta }} = (2;1; - 1)\) và trục Oz có vectơ chỉ phương là \(\vec k = (0;0;1)\) Có \(\overrightarrow {{u_\Delta }} \cdot \vec k = - 1 \ne 0\). Do đó đường thẳng \(\Delta \) không vuông góc với trục Oz .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có các vectơ chỉ phương của \(d\) và \({d^\prime }\) lân lượt là \(\vec a = (1;2; - 1)\) và \(\overrightarrow {{a^\prime }} = (2;4; - 2)\). \({\rm{Vi}}\overrightarrow {{a^\prime }} = 2\vec a\) nên \(\vec a\) và \(\overrightarrow {{a^\prime }} \) cùng phương. Từ đó suy ra \(d\) và \({d^\prime }\) song song với nhau hoặc trùng nhau.
Xét điểm \(M(1;0;3) \in d\), ta có \(M \notin {d^\prime }\) nên \(d//{d^\prime }\).
b) Ta có \(d\) và \({d^\prime }\) lản lượt nhận \(\vec a = (2;3;1)\) và \(\overrightarrow {{a^\prime }} = (3;2;2)\) là các vectơ chỉ phương. Vi \(\vec a\) và \(\overrightarrow {{a^\prime }} \) không cùng phương nên \(d\) và \({d^\prime }\) cắt nhau hoặc chéo nhau. \({d^\prime }\) đi qua \(M(1; - 2; - 1)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }} = (3;2;2)\) nên có phương trình tham số là:
\({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3{t^\prime }}\\{y = - 2 + 2{t^\prime }\left( {{t^\prime } \in \mathbb{R}} \right).}\\{z = - 1 + 2{t^\prime }}\end{array}} \right.\)\({t^\prime } = - \frac{2}{5}\), thay vào (3), ta thấy \(t\) và \({t^\prime }\) không thoả mãn (3).
Ta suy ra hệ phương trình trên vô nghiệm. Vậy hai đường thẳng \(d\) và \({d^\prime }\) chéo nhau.
c) Ta có: \(d\) đi qua \(M(0;1;0)\) và có vectơ chỉ phương \(\vec a = (1; - 1;2)\); \({d^\prime }\) đi qua \({M^\prime }(1;2; - 2)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }} = (5;1; - 2)\).
Nên phương trình tham số của \(d\) và \({d^\prime }\) lẩn lượt là:
Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{t = 1 + 5{t^\prime }}\\{1 - t = 2 + {t^\prime }}\\{2t = - 2 - 2{t^\prime }}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t - 5{t^\prime } = 1}\\{ - t - {t^\prime } = 1}\\{2t + 2{t^\prime } = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = - \frac{2}{3}}\\{{t^\prime } = - \frac{1}{3}}\end{array}} \right.} \right.} \right.\)
Hệ phương trình trên có đúng một nghiệm, nên \(d\) và \({d^\prime }\) cắt nhau.
Lời giải
Đường thẳng \({\Delta _1}\) đi qua \({A_1}(1;2; - 1)\) và có vectơ chỉ phương \({\vec u_1} = ( - 1;1;2)\). Đường thẳng \({\Delta _2}\) đi qua \({A_2}( - 6;5;5)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = (1;1;2)\). Ta có \(\overrightarrow {{A_1}{A_2}} = ( - 7;3;6)\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = (0;4; - 2)\). Do \(\overrightarrow {{A_1}{A_2}} \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 7) \cdot 0 + 3 \cdot 4 + 6 \cdot ( - 2) = 0\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \vec 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.