Câu hỏi:

19/08/2025 49 Lưu

Trong không gian Oxyz , chứng minh rằng hai đường thẳng sau vuông góc với nhau và chéo nhau:

Δ1:x=1+ty=2tz=1+2t và Δ2:x43=y+11=z1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \({\Delta _1}\) đi qua điểm \({A_1}(1;2; - 1)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}}  = (1; - 1,2)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({{\rm{A}}_2}(4; - 1;0)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = (3;1; - 1)\). Vì \(\overrightarrow {{u_1}}  \cdot \overrightarrow {{u_2}}  = 1 \cdot 3 + ( - 1) \cdot 1 + 2 \cdot ( - 1) = 0\) nên \(\overrightarrow {{u_1}} \) vuông góc với \(\overrightarrow {{u_2}} \). Do đó \({\Delta _1}\) vuông góc với \({\Delta _2}\).

Ta có \(\overrightarrow {{A_1}{A_2}}  = (3; - 3;1)\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 1;7;4)\).

Do \(\overrightarrow {{A_1}{A_2}}  \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 3 \cdot ( - 1) + ( - 3) \cdot 7 + 1 \cdot 4 =  - 20 \ne 0\) nên \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có các vectơ chỉ phương của \(d\) và \({d^\prime }\) lân lượt là \(\vec a = (1;2; - 1)\) và \(\overrightarrow {{a^\prime }}  = (2;4; - 2)\). \({\rm{Vi}}\overrightarrow {{a^\prime }}  = 2\vec a\) nên \(\vec a\) và \(\overrightarrow {{a^\prime }} \) cùng phương. Từ đó suy ra \(d\) và \({d^\prime }\) song song với nhau hoặc trùng nhau.

Xét điểm \(M(1;0;3) \in d\), ta có \(M \notin {d^\prime }\) nên \(d//{d^\prime }\).

b) Ta có \(d\) và \({d^\prime }\) lản lượt nhận \(\vec a = (2;3;1)\) và \(\overrightarrow {{a^\prime }}  = (3;2;2)\) là các vectơ chỉ phương. Vi \(\vec a\) và \(\overrightarrow {{a^\prime }} \) không cùng phương nên \(d\) và \({d^\prime }\) cắt nhau hoặc chéo nhau. \({d^\prime }\) đi qua \(M(1; - 2; - 1)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }}  = (3;2;2)\) nên có phương trình tham số là:

\({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3{t^\prime }}\\{y =  - 2 + 2{t^\prime }\left( {{t^\prime } \in \mathbb{R}} \right).}\\{z =  - 1 + 2{t^\prime }}\end{array}} \right.\)\({t^\prime } =  - \frac{2}{5}\), thay vào (3), ta thấy \(t\) và \({t^\prime }\) không thoả mãn (3).

Ta suy ra hệ phương trình trên vô nghiệm. Vậy hai đường thẳng \(d\) và \({d^\prime }\) chéo nhau.

c) Ta có: \(d\) đi qua \(M(0;1;0)\) và có vectơ chỉ phương \(\vec a = (1; - 1;2)\); \({d^\prime }\) đi qua \({M^\prime }(1;2; - 2)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }}  = (5;1; - 2)\).

Nên phương trình tham số của \(d\) và \({d^\prime }\) lẩn lượt là:

Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{t = 1 + 5{t^\prime }}\\{1 - t = 2 + {t^\prime }}\\{2t =  - 2 - 2{t^\prime }}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t - 5{t^\prime } = 1}\\{ - t - {t^\prime } = 1}\\{2t + 2{t^\prime } =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t =  - \frac{2}{3}}\\{{t^\prime } =  - \frac{1}{3}}\end{array}} \right.} \right.} \right.\)

Hệ phương trình trên có đúng một nghiệm, nên \(d\) và \({d^\prime }\) cắt nhau.

Lời giải

Đường thẳng \({\Delta _1}\) đi qua \({A_1}(1;2; - 1)\) và có vectơ chỉ phương \({\vec u_1} = ( - 1;1;2)\). Đường thẳng \({\Delta _2}\) đi qua \({A_2}( - 6;5;5)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = (1;1;2)\). Ta có \(\overrightarrow {{A_1}{A_2}}  = ( - 7;3;6)\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = (0;4; - 2)\). Do \(\overrightarrow {{A_1}{A_2}}  \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 7) \cdot 0 + 3 \cdot 4 + 6 \cdot ( - 2) = 0\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \vec 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) cắt nhau.