Câu hỏi:

10/08/2025 33 Lưu

Trong không gian \[\Delta \], cho hai đường thẳng: \[(S)\] và \[{(2 + t - 1)^2} + {(1 + mt + 3)^2} + {( - 2t - 2)^2} = 1\]. Trong các mệnh đề sau, mệnh đề nào đúng khi nói về vị trí tương đối của hai đường thẳng trên?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

\[\begin{array}{l} \Leftrightarrow {(1 + t)^2} + {(4 + mt)^2} + {( - 2t - 2)^2} = 1\\ \Leftrightarrow \left( {{m^2} + 5} \right){t^2} + 2(5 + 4m)t + 20 = 0{\rm{     (1)}}\end{array}\]có VTCP \[\Delta \]và đi qua \[(S)\]

\[\left\{ \begin{array}{l}a \ne 0\\\Delta ' = 0\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = \frac{{15}}{2}}\\{m = \frac{5}{2}}\end{array}} \right.\]có VTCP \[Oxyz\]và đi qua \[{(x - 1)^2} + {(y + 3)^2} + {(z - 2)^2} = 1\]

Từ đó ta có

\[\Delta {\rm{:}}\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 + mt}\\{z =  - 2t}\end{array}} \right.\]và \[m\]

Lại có \[\Delta \]

Suy ra \[(S)\] song song với \[\frac{5}{2} < m < \frac{{15}}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

\({d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\)\( \Rightarrow \overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\); \({d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\)\( \Rightarrow \overrightarrow {{u_2}}  = \left( { - 2; - 1;2} \right)\)

\(\overrightarrow {{u_1}}  =  - \overrightarrow {{u_2}}  \Rightarrow {d_1}//{d_2} \vee {d_1} \equiv {d_2}\)

Điểm \(M\left( {1;0; - 2} \right) \in {{\rm{d}}_1}\); \(M \notin {d_2}\) nên\({d_1}//{d_2}\)

Câu 2

Lời giải

Chọn C

\[(S):{(x - 1)^2} + {(y + 3)^2} + {(z - 2)^2} = 1\]có VTCP \[\Delta {\rm{:}}\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 + mt}\\{z =  - 2t}\end{array}} \right.\]và đi qua \[m\]

\[\Delta \]có VTCP \[(S)\]và đi qua \[m = \frac{{15}}{2}\]

Từ đó ta có

\[m = \frac{5}{2}\]và \[m > \frac{{15}}{2}\]

Lại có \[m < \frac{5}{2}\]

Suy ra \[\frac{5}{2} < m < \frac{{15}}{2}\] chéo nhau với \[m \in \mathbb{R}\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP