Trong không gian Oxyz, cho hình hộp chữ nhật \(ABCD \cdot {A^\prime }{B^\prime }{C^\prime }{D^\prime }\). Cho biết \(A(0;0;0)\), \(B(1;0;0),D(0;5;0),{A^\prime }(0;0;3)\). Tính góc giữa:
a) hai đường thẳng AC và \(B{A^\prime }\);
b) hai mă̆t phằng \(\left( {B{B^\prime }{D^\prime }D} \right)\) và \(\left( {A{A^\prime }{C^\prime }C} \right)\);
c) đường thẳng \(A{C^\prime }\) và mặt phẳng \(\left( {{A^\prime }BD} \right)\).
Trong không gian Oxyz, cho hình hộp chữ nhật \(ABCD \cdot {A^\prime }{B^\prime }{C^\prime }{D^\prime }\). Cho biết \(A(0;0;0)\), \(B(1;0;0),D(0;5;0),{A^\prime }(0;0;3)\). Tính góc giữa:
a) hai đường thẳng AC và \(B{A^\prime }\);
b) hai mă̆t phằng \(\left( {B{B^\prime }{D^\prime }D} \right)\) và \(\left( {A{A^\prime }{C^\prime }C} \right)\);
c) đường thẳng \(A{C^\prime }\) và mặt phẳng \(\left( {{A^\prime }BD} \right)\).
Quảng cáo
Trả lời:

Chọn hệ trục tọa độ như hình vẽ với \(O\) trùng với \(A\).
Ta có \({A^\prime }(0;0;3),B(1;0;0),A(0;0;0),C(1;5;0),{B^\prime }(1;0;3),D(0;5;0),{C^\prime }(1;5;3)\)
a) Đường thẳng AC nhận \(\overrightarrow {AC} = (1;5;0)\) làm vectơ chỉ phương.
Đường thẳng \({\rm{B}}{{\rm{A}}^\prime }\) nhận \(\overrightarrow {B{A^\prime }} = ( - 1;0;3)\) làm vectơ chỉ phương.
Khi đó \(\cos \left( {AC,B{A^\prime }} \right) = \frac{{|1.( - 1) + 5.0 + 0.3|}}{{\sqrt {{1^2} + {5^2}} \cdot \sqrt {{{( - 1)}^2} + {3^2}} }} = \frac{1}{{2\sqrt {65} }}\). Suy ra .
b) Ta có \(\overrightarrow {B{B^\prime }} = (0;0;3),\overrightarrow {BD} = ( - 1;5;0),\overrightarrow {AC} = (1;5;0),\overrightarrow {A{A^\prime }} = (0;0;3)\)
Ta có \(\left[ {\overrightarrow {B{B^\prime }} ,\overrightarrow {BD} } \right] = ( - 15; - 3;0),\left[ {\overrightarrow {AC} ,\overrightarrow {A{A^\prime }} } \right] = (15; - 3;0)\).
Mặt phẳng (BB'D'D) nhận \(\vec n = - \frac{1}{3}\left[ {\overrightarrow {B{B^\prime }} ,\overrightarrow {BD} } \right] = (5;1;0)\) làm vectơ pháp tuyến.
Mặt phẳng (AA'C'C) nhận \(\overrightarrow {{n^\prime }} = \frac{1}{3}\left[ {\overrightarrow {AC} ,\overrightarrow {A{A^\prime }} } \right] = (5; - 1;0)\) làm vectơ pháp tuyến.
Khi đó \(\cos \left( {\left( {B{B^\prime }{D^\prime }D} \right),\left( {A{A^\prime }{C^\prime }C} \right)} \right) = \frac{{|5 \cdot 5 + 1 \cdot ( - 1) + 0.0|}}{{\sqrt {{5^2} + 1} \cdot \sqrt {{5^2} + 1} }} = \frac{{24}}{{26}} = \frac{{12}}{{13}}\).
c) Ta có \(\overrightarrow {A{C^\prime }} = (1;5;3),\quad \overrightarrow {{A^\prime }B} = (1;0; - 3),\overrightarrow {{A^\prime }D} = (0;5; - 3)\), \(\left[ {\overrightarrow {{A^\prime }B} ,\overrightarrow {{A^\prime }D} } \right] = (15;3;5)\).
Đường thẳng AC ' nhận \(\overrightarrow {A{C^\prime }} = (1;5;3)\) làm vectơ chỉ phương.
Mặt phẳng (A'BD) nhận \(\vec n = \left[ {\overrightarrow {{A^\prime }B} ,\overrightarrow {{A^\prime }D} } \right] = (15;3;5)\) làm vectơ pháp tuyến.
Ta có \(\sin \left( {A{C^\prime },\left( {{A^\prime }BD} \right)} \right) = \frac{{|1.15 + 5.3 + 3.5|}}{{\sqrt {{1^2} + {5^2} + {3^2}} \cdot \sqrt {{{15}^2} + {3^2} + {5^2}} }} = \frac{{45}}{{7\sqrt {185} }}\). Suy raHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong không gian Oxyz, ta có \(C(2;3;0),\overrightarrow {SC} = (2;3; - 2)\); \(\overline {BD} = ( - 2;3;0)\).
a) Hai đường thằng SC và BD có vectơ chi phương lần lượt là \(\vec u = (2;3; - 2),\vec v = ( - 2;3;0)\).
Ta có \(\cos (SC,BD) = \frac{{|\vec u \cdot \vec v|}}{{|\vec u| \cdot |\vec v|}} = \frac{{|2 \cdot ( - 2) + 3 \cdot 3 + ( - 2) \cdot 0|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}} \cdot \sqrt {{{( - 2)}^2} + {3^2} + {0^2}} }} = \frac{5}{{\sqrt {221} }}\).
Suy ra .
b) Ta có phương trình mặt phẳng \((SBD)\) theo đoạn chắn là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{2} = 1\) hay \(3x + 2y + 3z - 6 = 0\).
Mặt phẳng \((SBD)\) có vectơ pháp tuyến \(\vec n = (3;2;3)\), mặt đáy \((ABCD)\) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Gọi \(\alpha \) là góc giũua mặt phẳng \((SBD)\) và mặt đáy.
Ta có \(\cos \alpha = \frac{{|\vec n \cdot \vec k|}}{{|\vec n| \cdot |\vec k|}} = \frac{{|3 \cdot 0 + 2 \cdot 0 + 3 \cdot 1|}}{{\sqrt {{3^2} + {2^2} + {3^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{3}{{\sqrt {22} }}\). Suy ra .
c) Gọi \(\beta \) là góc giũa đường thẳng SC và mặt phẳng \((SBD)\).
Ta có \(\sin \beta = \frac{{|\vec u \cdot \vec n|}}{{|\vec u| \cdot |\vec n|}} = \frac{{|2 \cdot 3 + 3 \cdot 2 + ( - 2) \cdot 3|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}} \cdot \sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{6}{{\sqrt {374} }}\). Suy ra .
Lời giải
Đường thẳng \(\Delta :\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{2}\) có vectơ chỉ phương là \(\vec u = (2; - 1;2)\).
Các trục tọa độ Ox , Oy và Oz có vectơ chỉ phương lần lượt là \(\vec i = (1;0;0)\), \(\vec j = (0;1;0)\) và \(\vec k = (0;0;1)\).
Ta có:
\(\begin{array}{l}\cos (\Delta ,{\rm{Ox}}) = \frac{{|2 \cdot 1 + ( - 1) \cdot 0 + 2 \cdot 0|}}{{\sqrt {{2^2} + {{( - 1)}^2} + {2^2}} \cdot \sqrt {{1^2} + {0^2} + {0^2}} }} = \frac{2}{3}\\\cos (\Delta ,{\rm{Oy}}) = \frac{{|2 \cdot 0 + ( - 1) \cdot 1 + 2 \cdot 0|}}{{\sqrt {{2^2} + {{( - 1)}^2} + {2^2}} \cdot \sqrt {{0^2} + {1^2} + {0^2}} }} = \frac{1}{3}\\\cos (\Delta ,{\rm{Oz}}) = \frac{{|2 \cdot 0 + ( - 1) \cdot 0 + 2 \cdot 1|}}{{\sqrt {{2^2} + {{( - 1)}^2} + {2^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{2}{3}\end{array}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.